Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Розділ 4. Метод найменших квадратів
Метод найменших квадратів (МНК) використовують як у навчальному процесі, так і в інженерній практиці при обробці результатів за допомогою комп’ютера. Найчастіше студенти не знайомі з основами методу. Тому в даному розділі стисло подано математичну суть МНК, яка полягає в мінімізації суми квадратів відхилень S експериментальних точок від теоретичних даних: . (4.1) Подавши функцію у вигляді степеневого ряду , на основі (4.1) одержуємо: . Завдання полягає у відшуканні таких значень а k, при яких S мінімальна. Умовою мінімуму є рівність нулю часткових похідних від S по всіх аk: . (4.2) При цьому вираз (4.2) є системою m +1 рівнянь для визначення аk: де l = 0, 1, …, m; k = 0, 1, …, m. ( 4.3) Найпростішим є випадок, коли – лінійна функція. До нього зводиться більшість задач лабораторного практикуму, оскільки майже завжди можна вказати такі перетворення величин і , коли залежність між новими масивами змінних , стає лінійною: y = ax + b. (4.4) Система рівнянь (4.3) для залежності (4.4) має простий вигляд: (4.5.) Розв’язуючи (4.5), знаходимо: , (4.6) . (4.7) Додатково, на основі теорії кореляцій, для рівняння лінійної регресії вигляду (4.4) встановлюються середньоквадратичні помилки і визначення коефіцієнтів a і b: , (4.8) , (4.9) а також коефіцієнт лінійного кореляційного зв’язку величин [ xi ] і [ yi ]: . (4.10) При значенні ρ = 1 існує функціональний зв’язок між xi і yi. Експериментальні дані при цьому точно вкладаються на пряму вигляду (4.4). Розкид величин xi і yi, зумовлений помилками експерименту знижує коефіцієнт кореляції. Якщо ρ = 0, величини xi і yi повністю незалежні одна від одної. У деяких випадках залежність не зводиться до лінійної ніякими перетвореннями змінних. Проте, якщо, вона може бути апроксимована степеневим рядом, то застосування МНК за описаною вище методикою хоч і ускладнюється, але все ж залишається принципово можливим. Так, у разі квадратичної залежності (4.11) система рівнянь (4.3) відносно a, b, c набирає вигляду: , (4.12) Для розв’язання систем (4.5) і (4.12) складені універсальні програми. Перша з цих програм є основною – її можна використовувати при обробці результатів експерименту для більшості задач лабораторного практикуму, друга використовується значно рідше. Зауваження. Використання цих програм студентом відбувається в комп’ютерному класі в діалоговому режимі і не вимагає від студента додаткових знань з інформатики чи обчислювальної техніки.
|