Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Розділ 4. Метод найменших квадратів






    Метод найменших квадратів (МНК) використовують як у навчальному процесі, так і в інженерній практиці при обробці результатів за допомогою комп’ютера. Найчастіше студенти не знайомі з основами методу. Тому в даному розділі стисло подано математичну суть МНК, яка полягає в мінімізації суми квадратів відхилень S експериментальних точок від теоретичних даних:

    . (4.1)

    Подавши функцію у вигляді степеневого ряду

    ,

    на основі (4.1) одержуємо:

    .

    Завдання полягає у відшуканні таких значень а k, при яких S мінімальна. Умовою мінімуму є рівність нулю часткових похідних від S по всіх аk:

    . (4.2)

    При цьому вираз (4.2) є системою m +1 рівнянь для визначення аk:

    де l = 0, 1, …, m; k = 0, 1, …, m. ( 4.3)

    Найпростішим є випадок, коли – лінійна функція. До нього зводиться більшість задач лабораторного практикуму, оскільки майже завжди можна вказати такі перетворення величин і , коли залежність між новими масивами змінних , стає лінійною:

    y = ax + b. (4.4)

    Система рівнянь (4.3) для залежності (4.4) має простий вигляд:

    (4.5.)

    Розв’язуючи (4.5), знаходимо:

    , (4.6)

    . (4.7)

    Додатково, на основі теорії кореляцій, для рівняння лінійної регресії вигляду (4.4) встановлюються середньоквадратичні помилки і визначення коефіцієнтів a і b:

    , (4.8)

    , (4.9)

    а також коефіцієнт лінійного кореляційного зв’язку величин [ xi ] і [ yi ]:

    . (4.10)

    При значенні ρ = 1 існує функціональний зв’язок між xi і yi.

    Експериментальні дані при цьому точно вкладаються на пряму вигляду (4.4). Розкид величин xi і yi, зумовлений помилками експерименту знижує коефіцієнт кореляції. Якщо ρ = 0, величини xi і yi повністю незалежні одна від одної.

    У деяких випадках залежність не зводиться до лінійної ніякими перетвореннями змінних. Проте, якщо, вона може бути апроксимована степеневим рядом, то застосування МНК за описаною вище методикою хоч і ускладнюється, але все ж залишається принципово можливим. Так, у разі квадратичної залежності

    (4.11)

    система рівнянь (4.3) відносно a, b, c набирає вигляду:

    , (4.12)

    Для розв’язання систем (4.5) і (4.12) складені універсальні програми. Перша з цих програм є основною – її можна використовувати при обробці результатів експерименту для більшості задач лабораторного практикуму, друга використовується значно рідше.

    Зауваження. Використання цих програм студентом відбувається в комп’ютерному класі в діалоговому режимі і не вимагає від студента додаткових знань з інформатики чи обчислювальної техніки.







    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.