Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Теоремы о функциях от матриц






     

    Теорема Кэли-Гамильтона: матрица A удовлетворяет собственному характеристическому уравнению. Этот результат можно записать в виде:

    На основе этой теоремы можно представить многочлен n-го порядка от матрицы A в виде линейной комбинации I, A, A2, …, An-1 или многочлена n-й степени относительно A.

    Теорема Сильвестра: если N(A) – матричный многочлен от A и если квадратная матрица A содержит n различных характеристических чисел, то многочлен от A можно записать в виде

    Можно показать, что

    где P(l) – характеристический многочлен A, а потому теорема Сильвестра может быть записана в виде

    Если матрица A содержит кратные характеристические корни, то необходимо использовать так называемую вырожденную форму теоремы Сильвестра. Пусть характеристический корень имеет порядок s. Тогда член суммы, соответствующий кратному корню li, можно представить в виде






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.