Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






К ЧИТАТЕЛЮ. Рассказы о металлах. — 4-е изд., перераб

УДК 669.1/.8

 

Рецензент проф. д.т.н. В.М. РОЗЕНБЕРГ

Рисунки А.В. КОЛЛИ

 

Оформление Е. А. МИХЕЛЬСОНА

Венецкий С.И.

Рассказы о металлах. — 4-е изд., перераб. и доп. —

М.: Металлургия, 1985. - 240 с, ил., 2, 91 л. ил.

ИСБН

 

Научно-популярная книга об истории открытия, свойст­вах и применении важнейших металлов и сплавов.

Первое издание книги " Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по науч­ной журналистике и дипломом ежегодного конкурса Всесоюзного общества " Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.

Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.

ББК 34.2


К ЧИТАТЕЛЮ

С тех пор как каменный век сдал свои полномо­чия эпохе меди, металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечатель­ные машины и механизмы.

Огромную роль металлов в нашей жизни подчер­кивал еще Георг Агрикола — немецкий мыслитель XVI века, автор многих работ по металлургии. В своем труде " О горном деле и металлургии" он писал: " Человек не может обойтись без металлов…, если бы не было металлов, люди влачили бы самую омерзительную и жалкую жизнь среди диких зверей. Они вернулись бы к желудям и лесным яблокам и грушам, питались бы травами и кореньями, когтями выгребали бы себе логовища, чтобы лежать в них ночью, а днем бродили бы там и сям по лесам и по­лям, подобно зверям. Поскольку же такой образ жизни совершенно недостоин человеческого разума, самого лучшего дара природы, неужели кто-либо окажется столь глуп и упрям, чтобы не согласиться, что металлы необходимы для пропитания и одежды и что они вообще служат для поддержания человече­ской жизни? "

Столь же высоко оценивал значение металлов для развития человеческого общества наш великий соотечественник М.В. Ломоносов: " Металлы подают укрепление и красоту важнейшим вещам, в обществе потребным..., — писал он в " Слове о пользе химии". — Ими защищаемся от нападения неприятеля, ими утвер­ждаются корабли и силою их связаны, между бур­ными вихрями в морской пучине плавают. Металлы отверзают недро земное к плодородию; металлы служат нам в ловлении земных и морских животных для пропитания нашего... И кратко сказать, ни едино художество, ни едино ремесло простое употребление металлов миновать не может".

Мир металлов необычайно богат и интересен. Среди них есть давние друзья человека: медь, железо, золото, серебро, свинец, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия.

Удивительны и разнообразны свойства металлов. Ртуть, например, не замерзает даже при тридцатигра­дусном морозе, а вольфрам не боится самых жарких объятий пламени. Серебро и медь охотно проводят электрический ток, а у титана явно не лежит душа к этому занятию. Литий вдвое легче воды и при всем желании не сможет утонуть, а осмий — чемпион среди металлов-тяжеловесов — камнем пойдет ко дну, поскольку его плотность в двадцать с лишним раз выше, чем у воды. Алюминием богата наша планета, а франций настолько редок, что его содержание в зем­ной коре измеряется буквально граммами.

Трудно даже представить, что произошло бы с окру­жающим нас миром, если бы вдруг исчезли металлы. Не будь железа — мы лишились бы автомобилей и поездов, стальных мостов и рельсов, станков и железо­бетонных конструкций; без алюминия немыслимы сегодня авиация и строительство; пропадет медь — и резко сократится ассортимент электротехнической продукции; не окажись вольфрама — погаснут мил­лиарды электрических лампочек; без хрома и никеля покроется ржавчиной нержавеющая сталь...

Думаю, нет нужды рисовать и дальше эту грустную картину: ведь почти у каждого металла есть свои не­малые " персональные заслуги" перед современной техникой. К счастью, все эти лишения нам не грозят. Более того, можно с уверенностью утверждать, что с каждым годом будут постоянно расширяться мас­штабы производства и потребления практически всех промышленных металлов, ученые создадут множество новых металлических материалов, да и " старые" металлы и сплавы раскроют нам неожиданные грани своих способностей. Кто знает, например, какие свойства продемонстрируют нам уже в ближайшие годы разнообразные металлические " стекла" — ме­таллы, затвердевшие в аморфном состоянии? Поистине уникальную способность " помнить" свою первона­чальную форму проявил чудо-сплав нитинол и ряд других аналогичных сплавов. Безграничны перспек­тивы композиционных материалов, важными ком­понентами которых являются металлы, сплавы, хими­ческие соединения металлов. Словом, можно не сомневаться, что в обозримом будущем металлы сохранят свои главенствующие позиции, останутся основой нашей материальной культуры.

О судьбах важнейших металлов рассказывает эта книга, которую я с удовольствием представляю читателям. Убежден, что она заинтересует не только подростков, открывающих для себя мир науки, но и всех тех, кто, давно расставшись со школьной или студенческой скамьей, не утратил свойственную моло­дости любознательность и пользуется каждой возмож­ностью расширить свой кругозор.

Академик А.Ф. Белов


В расцвете сил. — Экскурс в прошлое столетие. — Целебные воды Карлсбада. - Что легче?вазелиновые ванны.Летчики надевают жилеты. — Средство против подагры.Нужда заставила. - В воде не тонет. — Ни мороз не страшен, ни жара.В глубь Антарктиды. — Вечная смазка. — Вкусны ли стекла? — Голубое пламя. — Первая скрипка. — Результаты бомбардировки. — Литий " глотает" нейтроны.Двадцать Днепрогзсов. — Добрый старый керосин. — Литий против... лития.Ядерный " клей". - Кристалл из Южной Дакоты." Сезам! Отворись! ". — Подозрительное жаркое.

 

В 1967 году литий, стоящий в Периодической системе Д. И. Менделеева первым среди металлов, отмечал 150-летие со дня открытия. Свой юбилей элемент встретил в расцвете сил: деятельность его в современной технике интересна и многогранна. Тем не менее специалисты считают, что литий отнюдь не раскрыл еще полностью свои возможности, и пред­сказывают ему большое будущее- Но давайте совер­шим экскурс в прошлое столетие — заглянем в тихую лабораторию шведского химика Иоганна Августа Арфведсона. Итак: Швеция, 1817 год.

...Вот уже который день ученый анализирует мине­рал петалит, найденный на руднике Уто близ Стокголь­ма. Снова и снова проверяет он результаты анализа, но каждый раз сумма всех компонентов оказывается равной 96%. Где же теряются 4%? А что, если...? Да, сомнений нет: в минерале содержится какой-то неизвестный доселе элемент. Арфведсон проводит опыт за опытом, и вот, наконец, цель достигнута: от­крыт новый щелочной металл. А поскольку, в отличие от своих близких " родственников" — калия и натрия, впервые обнаруженных в органических продуктах, новичок был найден в минерале, ученый решает на­звать его литием (" литеос" по-гречески — камень).

Вскоре Арфведсон находит элемент и в других минералах, а известный шведский химик Берцелиус обнаруживает его в минеральных водах Карлсбада и Мариенбада. Кстати, и в наши дни широкой извест­ностью пользуются источники курорта Виши во Фран­ции, которые благодаря присутствию солей лития обладают высокими бальнеологическими свойствами.

В 1818 году англичанин Дэви сумел впервые выде­лить крупицы чистого лития электролизом его гидро-ксида, а в 1855 году немецкому химику Бунзену и независимо от него английскому физику Матиссену электролизом расплавленного хлорида удалось полу­чить чистый литий. Он оказался мягким серебристо-белым металлом, почти вдвое легче воды. В этом отношении литий не знает конкурентов среди метал­лов: алюминий тяжелее его в 5 раз, железо — в 15, свинец — в 20, а осмий — в 40 раз!

Даже при комнатной температуре литий энергично реагирует с азотом и кислородом воздуха. Попробуйте оставить кусочек лития в стеклянном сосуде с при­тертой пробкой. Металл поглотит весь имеющийся там воздух, в сосуде возникнет вакуум, и ат­мосферное давление так крепко " припечатает" пробку, что вам вряд ли удастся ее вытащить. Поэтому хранить литий очень непросто. Если натрий, например, можно легко упрятать в керосин или бензин, то для лития такой способ неприемлем — он тут же всплывает и загорает­ся. Чтобы сохранить литиевые прутки, их обычно вдавливают в ванну с вазелином или парафином, которые обволакивают металл и не позволяют ему проявлять свои реакцион­ные наклонности.

Еще более активно литий соединяется с во­дородом. Небольшое количество металла может связать колоссальные объемы этого газа: в 1 килограмме гидрида лития содержит­ся 2800 литров водорода! В годы второй ми­ровой войны таблетки гидрида лития служили американским летчикам портативными источ­никами водорода, которыми они пользовались при авариях над морем: под действием воды таблетки моментально разлагались, наполняя водородом спасательные средства — надувные лодки, жилеты, сигнальные шары-антенны.

Чрезвычайно высокая способность соедине­ний лития поглощать влагу обусловила их широкое применение для очистки воздуха на подводных лодках, в авиационных респира­торах, в системах кондиционирования воздуха.

Первые попытки промышленного использо­вания лития относятся к началу нашего века. До этого в течение почти ста лет его применяли главным образом в медицине как средство против подагры.

Во время первой мировой войны Германия испытывала крайнюю нужду в олове, весьма необходимом промышленности. Поскольку своим оловянным сырьем страна не распола­гала, ученым пришлось срочно искать замену этому металлу. С помощью лития проблему удалось успешно решить: сплав свинца с ли­тием (" бан-металл") оказался отличным анти­фрикционным материалом. С этого момента техника не расстается с литиевыми сплавами. Известны сплавы лития с алюминием, бериллием, медью, цинком, серебром и другими элементами. Особенно широкие перспективы открываются перед сплавами лития с другим металлом-легковесом — магнием, обладаю­щим к тому же хорошими конструкционными свойствами: ведь такой сплав, если в нем пре­обладает литий, легче воды. Но беда в том, что сплавы подобного состава неустойчивы — легко окисляются на воздухе. Металлурги давно стремились создать композицию и тех­нологию, которые обеспечили бы литиймагниевым сплавам долговечность. Эту задачу смогли решить ученые Института металлургии имени А.А. Байкова Академии наук СССР: в вакуумной тигельной электропечи в атмо­сфере инертного газа аргона был получен сплав лития с магнием, не тускнеющий на воздухе и не тонущий в воде.

Многие ценные' свойства лития — высокая реакционная способность, низкая температура плавления (всего 180, 5 °С), малая плотность его химических соединений — делают этот эле­мент желанным участником технологических процессов в черной и цветной металлургии. Он отлично справляется, например, с ролью дегазатора и раскислителя — удаляет из рас­плавленных металлов растворенные в них газы, такие, как азот, кислород. Благодаря литию структура некоторых сплавов стано­вится мелкозернистой и тем самым улучшают­ся их механические свойства. В производстве алюминия он успешно выступает в роли уско­рителя процесса. Добавка его соединений в электролит увеличивает производительность алюминиевого электролизера; при этом сни­жается необходимая температура ванны, за­метно сокращается расход электроэнергии.

Прежде электролит щелочных аккумулято­ров состоял только из растворов едкого натра. При введении в него нескольких граммов гидроксида лития срок службы аккумулятора возрастает втрое. Кроме того, значительно расширяется температурный диапазон его действия: он не разряжается даже при повы­шении температуры до 40 °С и не замерзает при двадцатиградусных морозах. Безлитиевому электролиту эти испытания не под силу. Уникальный миниатюрный аккумулятор для электронных наручных часов создан в Япо­нии: толщина этого аккумулятора, в котором анодом служит тончайшая пленка лития (катод выполнен из дисульфида титана) всего 34 микрона, т.е. он тоньше человеческого волоса. Крошечное электрическое устройство выдерживает 2000 зарядных циклов, а каж­дый заряд позволяет часам работать 200—300 часов. Немалые надежды возлагают на литий и конструкторы автомобильных фирм: в США, например, создана литиевая электрическая батарея, предназначенная для электромобиля, который сможет развивать скорость до 100 километров в час и проходить без подзарядки не одну сотню километров.

Некоторые органические соединения лития (стеарат, пальмиат и др.) сохраняют свои физические свойства в широком интервале температур. Это позволяет использовать их как основу для смазочных материалов, применяемых в военной технике. Смазка, в состав которой входит литий, помогает вездеходам, работающим в Антарктиде, совершать рейды в глубь континента, где морозь! порой достигают —80 °С. Литиевая смазка — надежный помощник автомобилистов. В этом уже убедились владельцы " Жигулей", не случайно называющие ее " вечной": достаточно один раз в начале эксплуатации смазать ею некото­рые трущиеся детали машины, и долгие годы они не будут нуждаться в этой операции.

Кто из нас не слышал о чудесах, творимых индийскими йогами. На глазах изумленной публики они разгрызают стеклянный стакан на мелкие кусочки, как обыкновенный сухарь, и проглатывают с выражением такого удовольствия, будто в жизни не пробовали ничего вкусней. А вам не приходилось употреблять стекло в пищу? " Что за нелепый во­прос? Разумеется, нет! " — так, вероятно, подумает каждый, кому доведется читать эти строки, — и ошибется. Оказывается, обычное стекло растворяется в воде. Конечно, не в такой степени, как, допустим, сахар, но все же растворяется. Точнейшие аналитические весы показывают, что вместе со стаканом горячего чая мы выпиваем около одной десятитысячной грамма стекла. Но если при варке стекла к нему добавить щепотку солей лантана, циркония и лития, его растворимость в воде уменьшается в сотни раз. Оно обретает устой­чивость даже по отношению к серной кислоте.

Деятельность лития в стекольном производстве не исчерпывается снижением раствори­мости стекла. Литиевые стекла характеризуются ценными оптическими свойствами, хоро­шей термостойкостью, высоким удельным сопротивлением, малыми диэлектрическими потерями. Литий, в частности, входит в состав стекол, из которых изготовляют телевизи­онные кинескопы. Если обычное оконное стекло обработать в расплаве солей лития, на нем образуется плотный защитный слой: стекло становится вдвое прочнее и устойчивее к повышенным температурам. Небольшие добавки этого элемента значительно снижают температуру варки стекла.

Издавна символом прозрачности служила капля росы. Но даже прозрачные, как роса, стекла уже не удовлетворяют современную технику: ей нужны оптические материалы, которые пропускали бы не только видимые глазом лучи света, но и невидимые, например ультрафиолетовые. При помощи обычных телескопов астрофизики не могут уловить излу­чения очень далеких галактик. Из всех известных оптике материалов самой высокой про­зрачностью для ультрафиолетовых лучей обладает фторид лития. Линзы из монокристал­лов этого вещества позволяют исследователям значительно глубже проникать в тайны Вселенной.

Немаловажную роль играет литий в производстве специальных глазурей, эмалей, красок, высококачественного фарфора и фаянса. В текстильной промышленности одни соединения этого элемента служат для отбеливания и протравливания тканей, другие — для их окраски.

Пиротехникам хорошо знакомы соли лития: они окрашивают в яркий сине-зеленый цвет след трассирующих пуль и снарядов.

На пиротехнических способностях лития основан следующий фокус. Попытайтесь поджечь кусочек сахара спичкой — у вас ничего не выйдет: сахар начнет плавиться, но не загорится. Если же перед этим сахар натереть табачным пеплом, то он легко вспыхнет красивым голубым пламенем. Объясняется это тем, что в табаке, как и во многих других растениях, в относительно больших количествах содержится литий. При сгорании табачных листьев часть его соединений остается в пепле. Они-то и позволяют провести этот неслож­ный химический фокус.

Но все, о чем мы пока рассказали, — это лишь второстепенные, побочные занятия лития. Есть у него дела и посерьезней. Речь идет о ядерной энергетике, где литий, возможно, начнет вскоре играть роль одной из первых скрипок. Ученые установили, что ядра изотопа лития-6 могут быть легко разрушены нейтронами. Поглощая нейтрон, ядро лития стано­вится неустойчивым и распадается, в результате чего образуются два новых атома: легкого инертного газа гелия и редчайшего сверхтяжелого водорода — трития. При очень высоких температурах атомы трития и другого изотопа водорода — дейтерия объединяются. Этот процесс сопровождается выделением колоссального количества энергии, называемой обыч­но термоядерной.

Особенно энергично термоядерные реакции протекают при бомбардировке нейтронами соединения изотопа лития-6 с дейтерием — дейтерида лития. Это вещество служит ядерным горючим в литиевых реакторах, которые обладают рядом преимуществ по сравнению с урановыми: литий значительно доступней и дешевле урана, при реакции не образуется ра­диоактивных продуктов деления, процесс легче регулируется.

Относительно высокая способность лития-6 захватывать медленные нейтроны легла в основу использования его в качестве регулятора интенсивности реакций, протекающих и в урановых реакторах. Благодаря этому свойству изотоп нашел применение также в за­щитных экранах против радиации, в атомных батареях с большим сроком службы. Не ис­ключено, что в скором времени литий-6 станет работать поглотителем медленных нейтро­нов на атомных летательных аппаратах.

Подобно некоторым другим щелочным металлам, литий применяют как теплоноситель в ядерных установках. Здесь можно использовать его менее дефицитный изотоп — литий-7 (в природном литии на его долю приходится около 93 %). Этот изотоп, в отличие от своего более легкого " брата", не может служить сырьем для производства трития и поэтому не представляет интереса для термоядерной техники. Но с ролью теплоносителя он справляется вполне успешно. В этом ему помогают высокая теплоемкость и теплопроводность, большой температурный интервал жидкого состояния, незначительная вязкость, малая плотность.

В последнее время серьезные права на литий начинает предъявлять ракетная техника. Много энергии необходимо затратить, чтобы преодолеть силы земного тяготения и выр­ваться в космические просторы. Ракета, которая вывела на орбиту корабль-спутник с пер­вым в мире космонавтом Юрием Гагариным, имела шесть двигателей общей мощностью 20 миллионов лошадиных сил! Это мощность двадцати таких гидроэлектростанций, как Днепрогэс.

Естественно, что выбор ракетного топлива представляет собой проблему исключитель­ной важности. Пока наиболее эффективным горючим считается керосин (да-да, добрый старый керосин!), окисляемый жидким кислородом. При сгорании этого топлива выде­ляется в полтора с лишним раза больше энергии, чем при взрыве такого же количества нитроглицерина — сильнейшего взрывчатого вещества.

Отличные перспективы может иметь применение металлического горючего. Теорию и методику использования металлов в качестве топлива для ракетных двигателей впервые разработали более полувека назад замечательные советские ученые Ф.А. Цандер и Ю.В. Кон­дратюк. Одним из наиболее подходящих для этой цели металлов является литий (большей теплотворностью может похвастать лишь бериллий). В США опубликованы патенты на твердое ракетное топливо, содержащее 51—68 % металлического лития.

Любопытно, что в процессе работы ракетных двигателей литий выступает против... лития. Являясь компонентом горючего, он позволяет развивать колоссальные температу­ры, а обладающие высокой термостойкостью и жароупорностью литиевые керамические материалы (например, ступалит), используемые как покрытия сопел и камер сгорания, предохраняют их от разрушительного действия лития-горючего.

В наши дни техника располагает большим количеством разнообразных синтетических материалов — полимеров, с успехом заменяющих сталь, латунь, стекло. Но у технологов подчас возникают большие трудности, когда при изготовлении некоторых изделий им необходимо соединить полимеры между собой или с другими материалами. Так, фторсодержащий полимер тефлон — идеальное антикоррозийное покрытие — долгое время не на­ходил практического применения из-за того, что плохо склеивался с металлом. Советскими учеными разработана оригинальная технология ядерной сварки полимеров с различными материалами. На свариваемые поверхности наносят небольшие количества соединений лития или бора, которые и служат своеобразным " ядерным клеем". При облучении этих слоев нейтронами возникают ядерные реакции, сопровождающиеся значительным выделением энергии, благодаря чему на очень короткое время (менее десятимиллиардной доли секунды) в материалах появляются микроучастки с темпе­ратурой в сотни и даже тысячи градусов. Но и за эти мгновения молекулы пограничных слоев ус­певают перемешаться, а иногда и образовать меж­ду собой новые химические связи — происходит ядерная сварка.

Как правило, элементы, располагающиеся в ле­вом верхнем углу таблицы Д.И. Менделеева, ши­роко распространены в природе. Но, в отличие от большинства своих соседей — натрия, калия, маг­ния, кальция, алюминия, которыми богата наша планета, литий — сравнительно редок. В природе встречается около тридцати минералов, содержа­щих этот ценный элемент. Основное природное соединение лития — сподумен. Кристаллы этого минерала, по форме напоминающие железнодо­рожные шпалы или стволы деревьев, порой до­стигают гигантских размеров: в Южной Дакоте (США) найден кристалл длиной более 15 метров; масса его измерялась десятками тонн. В американских месторождениях обнаружены очень красивые изумрудно-зеленые и розо­во-фиолетовые разновидности сподумена - полудрагоценные минералы гидденит и кунцит.

Большое значение как сырье для производства лития могут иметь гранитные пегма­титы. Подсчитано, что в одном кубическом километре гранита заключено более ста тысяч тонн лития — это во много раз больше, чем добывается ежегодно во всех странах мира. Бок о бок с литием в гранитных кладовых хранятся ниобий, тантал, цирконий, торий, уран, неодим, цезий, церий, празеодим и многие другие редкие элементы. Но как заставить гранит поделиться с человеком своими богатствами? Ученые заняты поисками, и безус­ловно им удастся создать такие методы, которые, подобно сказочным словам " Сезам! Отворись! ", позволят людям раскрыть гранитные кладовые.

Заканчивая рассказ о литии, поведаем об одной забавной истории, в которой этот эле­мент сыграл весьма важную рольЧ В 1891 году выпускник Гарвардского университета Роберт Вуд (впоследствии знаменитый американский физик) приехал в Балтимор, чтобы позаниматься химией в4 местном университете. Поселившись в студенческом пансионе, Вуд вскоре прослышал, что хозяйка якобы частенько готовит утреннее жаркое из... остатков вчерашнего обеда, собранных с тарелок. Но как это доказать?

Большой любитель находить для любой задачи оригинальное и вместе с тем простое ре­шение, Вуд не изменил себе и на этот раз. Однажды, когда на обед был подан бифштекс, он оставил на тарелке несколько больших кусков мяса, посыпав их хлоридом лития — совер­шенно безвредным веществом, похожим по виду и вкусу на обыкновенную поваренную соль. На следующий день кусочки жареного мяса, поданного студентам на завтрак, были " преданы сожжению" перед щелью спектроскопа. Красная линия спектра, присущая литию, поставила точку над i: чрезмерно экономная хозяйка пансиона была разоблачена. А сам Вуд много лет спустя с удовольствием вспоминал о своем следственном эксперименте.

 

 

Сказки превращаются в быль. — Изумрудные копи царицы Клеопатры. — Хобби римского императора. — " Он зелен, чист, весел и нежен... " — Тайна инков. — Следствие ведет знаток. — Уникальный камень возвращается в Россию. —" Зеленое утро и кровавый вечер". — Джильда ищет бериллий. — О чем рассказывают сосны? — Сенсационное сообщение. — Возмутитель спокойствия. — Тяжкое обвинение. — " Приговор" пересмотрен. — В космос! — Странный заказ. — Взрыва не будет. — Союз легчайших. — Важное открытие. — Нейтроны замедляют бег. — Звук бьет рекорды. — Атомная " игла". — Рукотворные самоцветы.

 

" Бериллий — один из самых замечательных элементов, огромного теоретического и практического значения.

...Овладение воздухом, смелые полеты самолетов и стратостатов невозможны без легких металлов; и мы уже предвидим, что в помощь современным металлам авиации — алюминию и магнию — придет и бериллий.

И тогда наши самолеты будут летать со скоростью в тысячи километров в час.

За бериллием будущее!

Геохимики, ищите новые месторождения. Химики, научитесь отделять этот легкий металл от его спутника — алюминия. Технологи, сделайте легчайшие сплавы, не тонущие в воде, твердые, как сталь, упругие, как резина, прочные, как платина, и вечные, как самоцвет...

Может быть, сейчас эти слова кажутся сказкой. Но как много сказок на наших глазах превратилось в быль, влилось в наш простой домашний обиход, а мы забываем, что еще 20 лет тому назад наши радио и звуковое кино звучали фантастической сказкой".

Так писал почти полвека назад крупнейший советский ученый академик А.Е. Ферсман, уже тогда сумевший по достоинству оценить значение бериллия.

Да, бериллий - это металл будущего. И в то же время в Периодической системе найдется немного элементов, история которых, подобно истории бериллия, уходит в далекое-далекое прошлое.

...Свыше двух тысячелетий назад в безводной пустыне Нубии, где находились знаменитые изумрудные копи царицы Клеопатры, рабы добывали чудесные кристаллы зеленого камня. Караваны верблюдов доставляли изумруды к берегам Красного моря, а оттуда они попадали во дворцы властителей стран Европы, Ближнего и Дальнего Востока — византийских императоров, персидских шахов, китайских богдыханов, индийских раджей.

Великолепным блеском, чистотой окраски, красотой игры — то густо-зеленый, почти темный, то сверкающий ослепительной зеленью — изумруд во все времена пленял человека. " В сравнении с ним, — писал римский историк Плиний Старший, — никакая вещь зеленее не зеленеет...". По преданию, жестокий и самовлюбленный римский император Нерон обычно смотрел на кровавые бои гладиаторов через большой отшлифованный кристалл изумруда. Когда в Риме вспыхнул пожар, Нерон любовался пляшущими языками огня через тот же " оптический" изумруд, в котором оранжевые краски пламени зловеще сливались с зеленью камня (Возможно, в эту древнюю легенду придется внести существенную поправку: по сообщениям печати, монокль Нерона, хранящийся в Ватикане, недавно якобы попал в руки специалисту-минералогу и оказалось, что кристалл представляет собой не изумруд, а хризолит). " Он зелен, чист, весел и нежен, как трава весенняя..." — писал об изумруде А.И. Куприн.

С открытием Америки в историю зеленого камня была вписана новая страница. В могилах и храмах Мексики, Перу, Колумбии испанцы обнаружили множество крупных темно-зеленых изумрудов. За несколько лет испанцы разграбили эти сказочные богатства. Найти же место, где добывался чудесный самоцвет, им долго не удавалось. И только в середине XVI столетия завоеватели Америки сумели, наконец, овладеть тайной инков и проникнуть к сокровищам изумрудных копей Колумбии.

Редкий по красоте колумбийский изумруд царил в ювелирном деле до XIX века. В 1831 году уральский смолокур Максим Кожевников, собирая валежник в лесу близ небольшой речушки Токовой, нашел первый русский изумруд. Крупные ярко-зеленые изумруды Урала быстро получили признание ювелиров всего мира.

Разработкой уральских изумрудных копей руководил в то время " исправляющий должность командира" Екатеринбургской гранильной фабрики Яков Коковин, кристально честный человек, большой знаток и художник камня. В 1834 году к нему попал найденный на одном из приисков громадный изумруд, весивший более двух килограммов. Мог ли он тогда знать, какую роковую роль сыграет в его судьбе этот красивый камень, вошедший в историю минералогии как " изумруд Коковина"?

Наиболее ценные камни командир гранил сам. И на этот раз он намеревался своими руками произвести огранку самоцвета-великана. Но его планам не суждено было сбыться: из Петербурга по ложному доносу внезапно нагрянула ревизия, у Коковина учинили обыск и " нашли" изумруд, который тот и не собирался прятать. Вместе с камнем его под стражей отправили в столицу. Следствие по этому делу вел граф Перовский, слывший большим знатоком и любителем драгоценных камней. Он и довел дело до желанного для себя конца: ни в чем не повинного Коковина граф упрятал в тюрьму (где сломленный несправедливыми наветами мастер вскоре покончил с собой), а изумруд, минуя государственную казну, пополнил коллекцию графа. Но у того камень не задержался: крупно проиграв в карты, знатный вельможа вынужден был расстаться с ним, и изумруд перекочевал к тайному советнику князю Кочубею, владельцу крупнейшей в России коллекции самоцветов. После смерти князя его сын перевез немало ценных камней, среди которых находился и " изумруд Коковина", в Вену, где устроил их распродажу. По настоянию российской Академии наук царское правительство за огромные деньги выкупило коллекцию. Самый крупный в мире изумруд вернулся на родину и сейчас украшает экспозицию Минералогического музея Академии наук СССР в Москве.

Изумруд — один из многих минералов бериллия. Голубовато-зеленый, цвета морской воды аквамарин и вишнево-розовый воробьевит, винно-желтый гелиодор и желтовато-зеленый берилл, чистейшей воды фенакит и нежный синий эвклаз, прозрачный зеленый хризоберилл и его удивительная разновидность александрит — густо-зеленый днем и малиновый при искусственном освещении (" зеленое утро и кровавый вечер" — образно описал его Н.С. Лесков) — вот лишь некоторые, но, пожалуй, наиболее именитые представители семейства бериллиевых самоцветов.

Земная кора отнюдь не бедна бериллием, хотя этот элемент прочно снискал себе репутацию редкого. Объясняется это, в частности, тем, что найти бериллиевые минералы подчас бывает нелегко. И тут на помощь человеку может прийти его давний друг — собака. В последнее время в литературе часто появляются сообщения о поисках полезных ископаемых с помощью четвероногих " геологов". Об умении собак находить что-либо или кого-либо по запаху известно немало фактов и легенд. Но каковы их геологические способности? Какие минералы могут отыскать лохматые рудознатцы? " Ответить на этот вопрос нам помогла коллекция Минералогического музея Академии наук СССР, — рассказывает доктор биологических наук Г.А. Васильев — инициатор нового направления в разведке спрятанных в земле природных кладов. — Особенно эффективным оказался опыт с металлическим бериллием: понюхав его, собака по кличке Джильда затем из множества минералов выбрала изумруд, аквамарин, воробьевит, фенакит, бертрандит, т.е. все то и только то, что содержит бериллий. Разложив все бериллийсодержащие минералы среди других образцов и дав их выбрать собаке, мы снова просили собаку искать. Тогда Джильда шла по музею, ложилась грудью на витрину, где находился огромный изумруд, и лаяла".

Представители флоры тоже готовы внести свою лепту в поиск бериллиевых месторождений. В этой роли может выступать обыкновенная сосна, имеющая склонность отбирать бериллий из почвы и накапливать его в своей коре. Если сосна растет недалеко от залегания бериллиевых минералов, то концентрация этого элемента в сосновой коре оказывается в сотни раз выше, чем в почве, и в десятки раз выше, чем в коре других деревьев, например березы или лиственницы.

Как вы уже знаете, ювелиры с почтением относятся ко многим бери ллиевым камням-самоцветам, а вот технологи, занятые производством металлического бериллия, более разборчивы в своих привязанностях: из всех бериллиевых минералов они ценят лишь берилл, ибо только этот минерал имеет промышленное значение. В природе встречаются кристаллы-гиганты берилла: масса их достигает десятков тонн, длина — нескольких метров. А недавно на Мадагаскаре обнаружен монокристалл берилла, весящий 380 тонн. Длина этого " кристаллика" 18 метров, его поперечник 3, 5 метра.

В Горном музее в Ленинграде есть интересный экспонат — полутораметровый кристалл берилла. В блокадную зиму 1942 года вражеский снаряд пробил крышу здания и разорвался в главном зале. Осколки серьезно повредили кристалл, и казалось, что ему уже не найдется места в экспозиции музея. Но после кропотливой ювелирной работы художников-реставраторов камень был восстановлен в первоначальном виде. Сейчас о пережитой им операции напоминают лишь два поржавевших снарядных осколка, вмурованных в пластину из органического стекла, да пояснительная табличка, рассказывающая об этом экспонате.

Не удивительно, что бериллиевые камни-самоцветы издавна привлекали внимание не только любителей драгоценностей, но и химиков.

В XVIII веке, когда науке еще не был известен элемент, находящийся сейчас в Периодической системе под номером 4, многие ученые пытались анализировать берилл, однако никто не смог обнаружить содержащийся в нем металл. Он словно прятался за спину алюминия и его соединений — свойства этих элементов удивительно схожи. Но различия все же были. И первым, кому удалось их заметить, стал французский химик Луи Никола Воклен. 26 плювиоза VI года революционного календаря (т.е. 15 февраля 1798 года) на заседании французской Академии наук Воклен сделал сенсационное сообщение о том, что в берилле и изумруде содержится новая " земля", отличная по своим свойствам от глинозема, или-оксида алюминия.

Соли нового элемента имели сладковатый привкус, и потому Воклен предложил назвать его глицинием (по-гречески " гликос" — сладкий), однако многие ученые сочли это название неудачным, поскольку сладкий вкус присущ солям и других элементов, например иттрия. По предложению известных химиков немца Клапрота и шведа Экеберга, также занимавшихся исследованиями берилла, открытый в этом минерале химический элемент был назван бериллием, а название глициний долгое время сохранялось лишь во французской химической литературе.

Сходство бериллия и алюминия доставило немало хлопот создателю Периодической системы элементов Д.И. Менделееву. Дело в том, что в середине XIX века бериллий именно из-за этого сходства считался трёхвалентным металлом с атомной массой 13, 5 и, следовательно, должен был занимать в таблице место между углеродом и азотом. Это вносило явную путаницу в закономерное изменение свойств элементов и ставило под сомнение правильность Периодического закона. Менделеев, убежденный в своей правоте, считал, что атомная масса бериллия определена неверно, что элемент должен быть не трехвалентным, а двухвалентным с магнезиальными свойствами. На основании этого он поместил бериллий во вторую группу, исправив его атомную массу на 9. Вскоре это вынуждены были подтвердить шведские химики Нильсон и Патерсон, которые ранее были твердо убеждены в трех-валентности бериллия. Их тщательные исследования показали, что атомная масса этого элемента равна 9, 1. Так, благодаря бериллию - возмутителю спокойствия в Периодической системе — восторжествовал один из важнейших химических законов.

Судьба этого элемента во многом сходна с судьбами его собратьев-металлов. В свободном виде он был выделен в 1828 году немецким химиком Вёлером и независимо от него французским химиком Бюсси, но лишь спустя семь десятилетий француз Лебо электролизом расплавленных солей смог получить чистый металлический бериллий. Не мудрено, что еще в начале нашего века химические справочники безапелляционно обвиняли бериллий в " тунеядстве": " Практического применения не имеет".

Однако бурное развитие науки и техники, которым ознаменовался XX век, заставило химиков и других специалистов пересмотреть этот явно несправедливый приговор. Изучение чистого бериллия показало, что он обладает многими ценными и интересными свойствами.

Один из самых легких металлов, бериллий характеризуется в то же время солидной прочностью, большей, чем у конструкционных сталей, не говоря уже о " коллегах" бериллия по группе металлов-легковесов. Так, если алюминиевая проволока сечением 1 квадратный миллиметр способна выдержать лишь чуть более 10 килограммов (например, ведро с водой), то бериллиевая проволока такого же сечения выдерживает груз в шесть раз тяжелее, т.е. равный приблизительно массе тела взрослого человека. В то же время бериллий. плавится при гораздо более высокой температуре, чем магний и алюминий. Такое удачное сочетание свойств делает бериллий сегодня одним из основных авиационных материалов. Детали самолета, изготовленные из этого металла, намного легче, чем алюминиевые.

Отличная теплопроводность, высокая теплоемкость и жаропрочность дают возможность использовать бериллий и его соединения в космической технике в качестве теплозащитного материала. Из бериллия были выполнены, например, элементы тепловой защиты кабины американского космического корабля " Меркурий".

Бериллиевые детали, сохраняющие высокую точность и стабильность размеров, используются в гироскопах — приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников Земли.

С точки зрения освоения космического пространства весьма перспективно еще одно свойство бериллия: при его горении выделяется огромное количество тепла. В этом отношении с ним не в силах конкурировать ни один другой металл. Не случайно конструкторы космической техники рассматривают бериллий как возможный компонент высокоэнергетического ракетного горючего для полетов на Луну и более далекие от нас небесные тела. Предложено также изготовлять из него топливные резервуары ракетных систем: когда горючее израсходуется, вместо него можно будет использовать (или, попросту говоря, сжечь) бериллиевую " тару".

Широкое применение в авиации находят сплавы меди с бериллием — бериллиевые бронзы. Из них изготовляют многие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в значительном интервале температур, высокая электро- и теплопроводность. Подсчитано, что в современном тяжелом самолете свыше тысячи деталей сделано из этих сплавов. Благодаря своим упругим свойствам бериллиевая бронза служит прекрасным пружинным материалом. Пружины из такой бронзы практически не знают усталости: они способны выдерживать миллиарды циклов значительной по величине нагрузки!

Кстати, именно с пружинами связан любопытный эпизод из истории второй мировой войны. Гитлеровская промышленность была отрезана от основных источников бериллиевого сырья. Мировая добыча этого ценного стратегического металла практически полностью находилась в руках США. И немцы пошли на хитрость. Они решили использовать нейтральную Швейцарию для контрабандного ввоза бериллиевой бронзы: американские фирмы получили от швейцарских " часовщиков" заказ на такое ее количество, которой хватило бы на часовые пружины всему миру лет на пятьсот вперед. Хитрость, правда, была разгадана, и этот заказ остался невыполненным. Но все же время от времени в новейших марках скорострельных авиационных пулеметов, поступавших на вооружение фашистской армии, появлялись пружины из бериллиевой бронзы.

Усталость — одно из " профессиональных заболеваний" многих металлов и сплавов, которые, не выдерживая переменных нагрузок, постепенно разрушаются. Добавка же в сталь даже небольшого количества бериллия как рукой снимает усталость. Если автомобильные рессоры из обычной углеродистой стали ломались уже после 800—850 тысяч толчков, то после введения я сталь " витамина Be" рессоры выдерживали десятки миллионов толчков, не обнаруживая и следов усталости.

В отличие от стали, бериллиевая бронза не искрится при ударе о камень или металл, поэтому ее широко используют для изготовления инструмента, применяемого на взрывоопасных работах — в шахтах, на пороховых заводах, нефтебазах.

Бериллий существенно влияет на свойства магния. Так, присадка всего нескольких тысячных долей процента бериллия предотвращает возгорание магниевых сплавов при плавке и разливке (т.е. примерно при 700 °С). Резко уменьшается при этом и коррозия сплавов — как на воздухе, так и в воде.

Большое будущее принадлежит, по-видимому, сплавам бериллия с литием. Союз этих двух легчайших металлов приведет, быть может, к появлению отличных конструкционных сплавов — прочных, как сталь, и легких, как дерево.

По своим химическим данным бериллий мог бы с успехом выполнять роль раскислителя стали, помогая ей избавляться от проникшего в нее кислорода. К сожалению, он еще слишком дорог, и использовать его в больших количествах металлургии пока не могут. Но они нашли бериллию другое важное применение, где расход его невелик: насыщение этим металлом поверхности стальных изделий — бериллизация — значительно повышает их твердость, прочность, износостойкость.

Весьма благосклонны к бериллию рентгенотехники — ведь он лучше всех других устойчивых на воздухе металлов пропускает рентгеновские лучи. Сейчас из него во всем мире делают окна для рентгеновских трубок. Пропускная способность таких окон почти в двадцать раз выше, чем алюминиевых, применявшихся ранее для этой цели.

Бериллий сыграл заметную роль в развитии учения о строении атома и его ядра. Еще в начале 30-х годов немецкие физики Боте и Беккер, бомбардируя бериллий альфа-частицами, обнаружили так называемое бериллиевое излучение — очень слабое, но обладающее значительной проникающей силой: лучи проходили через слой свинца толщиной несколько сантиметров. Природу этого излучения установил в 1932 году англичанин Чэдвик. Оказалось, что оно представляет собой поток электрически нейтральных частиц, масса которых примерно равна массе протона. Новые частицы были названы нейтронами.

Отсутствие электрического заряда позволяет нейтронам легко внедряться в ядра атомов других элементов. Это свойство сделало нейтрон эффективнейшим снарядом атомной артиллерии. Сейчас нейтронные пушки широко применяются для осуществления ядерных реакций.

Изучение атомной структуры бериллия показало, что для него характерно малое сечение захвата нейтронов и большая величина их рассеяния. Благодаря этому бериллий рассеивает нейтроны, изменяет направление их движения и замедляет скорость до таких значений, при которых цепные реакции протекают более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов. Прекрасно справляется он с ролью отражателя нейтронов, возвращает их в активную зону реактора, противодействует их утечке. Ему присуща также высокая радиационная стойкость, сохраняющаяся при очень

больших температурах. Все эти замечательные свойства делают бериллий одним из самых необходимых элементов «томной техники.

Несомненный интерес для науки представляет " звукопропускная" способность этого металла. В воздухе скорость звука составляет 330 метров -в секунду, в воде — около 1500 метров. В бериллии же звук побивает все рекорды, преодолевая за секунду 12600 метров (в 2-3 раза больше, чем в других металлических материалах). На эту особенность уже обратили внимание создатели музыкальных инструментов.

Многими ценными свойствами обладает и оксид бериллия. Высокая огнеупорность (температура плавления более 2600 °С), значительная химическая стойкость и большая теплопроводность позволяют использовать этот материал для футеровки индукционных печей, изготовления тиглей для плавки различных металлов и сплавов. Так, для выплавки бериллия в вакууме применяют тигли только из оксида бериллия, который с ним абсолютно не взаимодействует. Этот оксид служит основным материалом для оболочек тепловыделяющих элементов (твэлов) атомных реакторов.

Теплоизоляционные свойства оксида бериллия, возможно, будут использованы и при исследовании глубинных слоев нашей планеты. Существует проект взятия проб из мантии Земли с глубин до 32 километров с помощью так называемой " атомной иглы", представляющей собой миниатюрный атомный реактор, который заключен в теплоизолирующий футляр из оксида бериллия с острием из тяжелых вольфрамовых сплавов.

Оксид бериллия имеет уже большой стаж работы в стекольной промышленности. Добавки его повышают твердость, показатель преломления и химическую стойкость стекол. Введение оксида и других соединений бериллия позволяет получать специальные стекла высокой прозрачности для всех лучей спектра — от ультрафиолетовых до инфракрасных.

Оксид бериллия служит и исходным сырьем для создания искусственных изумрудов и других бериллиевых самоцветов, выращиваемых при высоких давлениях и температурах. Этот процесс осуществляется сегодня уже не только в научных лабораториях, но и в производственных условиях.

...Сбылись пророческие слова замечательного ученого и мечтателя А.Е. Ферсмана. Совсем немного времени понадобилось бериллию, чтобы оправдать возлагаемые на него надежды. Из малоизвестного редкого элемента он превратился сегодня в один из важнейших металлов XX века.

 

 

Проблемы алхимиков. — Истина в воде. — Обошлись без фейерверка. — В пламени спички. — В нижних слоях мантии. — " Горная кожа". — Какой способ лучше? — Нептун может спать спокойно. — Каждый вносит свой пай. — В жаркие минуты. — На металлургическом поприще. — В борьбе со вспыльчивостью. — Что происходит под водой? — Скафандр готов. — " Спокойно, снимаю! " — Есть дела поважней. — В яичной скорлупе. — Ешьте бананы. — Грозит инфаркт. — Сын или дочь? — Не только в медицине. — Ждать не надо. — Спустя столетие. — Подобно скрипке. — Лучшая роль впереди. — " Командировка" на Луну.

 

Одной из основных проблем, над которой бились " научные работники" средневековых алхимических лабораторий, были поиски пресловутого " философского камня". С его помощью они надеялись найти тайну получения золота из неблагородных металлов.

Поиски велись в различных направлениях. Одни предлагали использовать для этой цели свинец, который требовалось нагреть до получения " красного льва" (т.е. до расплавления), а затем кипятить в кислом виноградном спирте. Другие считали, что самым подходящим сырьем для производства " философского камня" является моча животных. Третьи утверждали, что истина — в воде.

В конце XVIII века один из английских алхимиков, по-видимому сторонник третьего направления, выпаривая воду, вытекающую из земли вблизи города Эпсом, получил вместо " философского камня" соль, обладающую горьким вкусом и слабительным действием. Спустя несколько лет выяснилось, что при взаимодействии с " постоянной щелочью" (так в те времена называли соду и поташ) эта соль образует белый легкий рыхлый порошок. Точно такой же порошок получался при прокаливании минерала, найденного в окрестностях древнегреческого города Магнесии. За это сходство эпсомская соль была названа белой магнезией.

В 1808 году английский ученый Гемфри Дэви, анализируя белую магнезию, получил новый элемент, который он назвал магнием. Торжества по случаю открытия нового элемента не сопровождались фейерверком, поскольку в те времена еще не было известно, что новорожденный обладает отличными пиротехническими свойствами.

Магний — очень легкий серебристо-белый металл. Он почти в пять раз легче меди или железа; даже " крылатый" алюминий в полтора раза тяжелее магния. Температура плавления магния сравнительно невысока — всего 650 °С, но в обычных условиях расплавить магний довольно трудно: нагретый на воздухе до 560 °С, он вспыхивает и мгновенно сгорает ослепительно ярким пламенем (это свойство магния широко используют в пиротехнике). Чтобы поджечь этот металл, достаточно поднести к нему зажженную спичку, а в атмосфере хлора он загорается даже при комнатной температуре. При горении магния выделяется большое количество ультрафиолетовых лучей и тепла: нескольких граммов этого " топлива" хватит, чтобы вскипятить стакан ледяной воды. Этим свойством магния оригинально воспользовались ученые Варшавского института промышленной химии: они предложили конструкцию консервных банок с нагревателем, которым служит магниевая лента: как только открывается банка, лента загорается и через две-три минуты горячее блюдо можно подавать на стол.

На воздухе магний быстро тускнеет, так как покрывается оксидной пленкой. Эта пленка служит надежным панцирем, предохраняющим металл от дальнейшего окисления.

Магний весьма агрессивен: он легко отнимает кислород и хлор у большинства элементов. Будучи устойчивым против воздействия некоторых кислот, соды, едких щелочей, бензина, керосина, минеральных масел, магний бессилен против морской воды и вынужден растворяться в ней. Он почти не реагирует с холодной водой, но энергично вытесняет водород из горячей.

Земная кора богата магнием: лишь семь его " коллег" по таблице Менделеева находятся в природе в больших количествах. Как полагают ученые, особенно велико содержание этого элемента в нижних слоях земной мантии. Магний входит в состав почти двухсот минералов. Среди них есть совсем не обычный: его легко сложить, как носовой платок в него можно завернуть что-либо, как в бумагу, наконец, его нетрудно разорвать пальцам в клочки.

Уникальный образец такого минерала был найден в 1953 году на Дальнем Востоке При проходке шахты в месторождении полиметаллических руд рабочие обнаружили небольшую пещеру и в ней — свисающую с потолка серовато-белую " занавесь", как бы сложенную вдвое. На ощупь эта " занавесь", имевшая метра полтора в длину и около метра в ширину, напоминала замшу — была так же мягка и эластична. Поражала и необыкновенная легкость " ткани". Интересную находку направили в Москву. Химический анализ показал, что она состоит в основном из алюмосиликата магния и представляет собой палыгорскит — минерал группы асбеста, впервые обнаруженный в 20-х годах нашего века в Палыгорском месторождении на Урале академиком А.Е. Ферсманом. За необычные свойства минерал чаще называют " горной кожей". Дальневосточный образец, который хранится в Минералогическом музее Академии наук СССР, примечателен тем, что " горная кожа" таких больших размеров найдена впервые в мире.

Наибольшее промышленное значение как магниевое сырье имеют магнезит, доломит карналлит.

Существуют два способа производства магния — электротермический и электролитический. В первом случае металл получают непосредственно из оксида, действуя на него каким-либо восстановителем — углеродом, алюминием и т.д. Этот способ довольно прост по своей идее и в последнее время находит все более широкое применение. Однако пока основным промышленным способом получения магния является электролитический, представляющий собой электролиз расплавленных магниевых солей, главным образом хлористых. Таким путем можно получать очень чистый металл, содержащий менее 0, 01 % примесей.

Не только земная кора богата магнием — практически неисчерпаемые и постоянно пополняющиеся запасы его хранят голубые кладовые океанов и морей. Достаточно сказать, что в 1 кубическом метре морской воды содержится около 4 килограммов магния. Всего же в водах океанов и морей растворено свыше 6*1016 тонн этого элемента. Даже далекие от математики люди, видимо, могут представить, сколь грандиозна эта величина. Впрочем, для большей наглядности приведем следующий пример: с начала нашего летоисчисления человечество прожило лишь немногим более 60 миллиардов (6*1010) секунд. Если бы с первых дней нашей эры люди начали добывать магний из морской воды, то для того, чтобы к настоящему времени исчерпать все водные запасы этого элемента, пришлось бы каждую секунду извлекать по миллиону тонн магния!

Но пока Нептун может быть спокоен за свои богатства: даже во время второй мировой войны, когда производство магния было значительным, из морской воды получали всего 80 тысяч тонн магния в год (а не в секунду!). Технология извлечения его довольно проста. Морскую воду смешивают в огромных баках с известковым молоком, приготовляемым из размолотых морских раковин. В результате образуется так называемое магнезиальное молоко, которое затем превращается в хлорид магния. В дальнейшем магний отделяют от хлора электролизом. Сегодня уже в разных странах, главным образом в тех, которые не располагают солидными запасами магниевого сырья, действуют заводы по извлечению магния из морской воды. Попутно эти прибрежные предприятия получают поваренную и глауберову соль, хлор, большое количество питьевой воды и рассол для производства каустической соды.

Источником магния может быть и вода соленых озер, содержащая хлорид магния (так называемая рапа). У нас в стране такие " склады" магния есть в Крыму (Сакское и Сасык-Ивашское озера), в Поволжье (озеро Эльтон) и других районах. Богатые запасы магниевого сырья хранятся в заливе Кара-Богаз-Гол, в рапе которого содержится до 30 % солей этого элемента.

Итак, вы уже знаете, что представляет собой магний и как осуществляется его добыча. Ну, а для каких же целей служит этот элемент и его соединения?

Легкость могла бы сделать этот металл прекрасным конструкционным материалом. Но, увы, чистый магний — мягок и непрочен. Поэтому конструкторы вынуждены использовать сплавы магния с другими металлами. Особенно широко применяют сплавы магния с алюминием, цинком и марганцем. Каждый из компонентов этого содружества вносит свой пай в общие свойства: алюминий и цинк увеличивают прочность сплава, марганец повышает его антикоррозионные свойства. Ну, а магний? Магний придает сплаву легкость — детали из магниевого сплава на 20—30% легче алюминиевых и на 50-75 % легче чугунных и стальных. В последнее время в ряде стран разработаны необычайно легкие конструкционные сплавы магния с литием, для которых, разумеется, всегда найдется интересная работа.

Легкость сплавов магния не могла не привлечь внимания авиаконструкторов. Еще в 1934 году в СССР был построен почти целиком и» магниевых сплавов самолет " Серго Орджоникидзе". Успешно выдержав испытания, самолет затем в течение нескольких лет находился в эксплуатации. Опыт пригодился в годы Великой Отечественной войны, когда из магниевых сплавов изготовляли колеса, корпуса приборов и другие авиадетали.

Веские основания есть у магния и для службы в ракетной технике: благодаря высокой теплоемкости магниевого сплава выполненные из него наружные элементы космического аппарата в жаркие минуты нагреваются значительно меньше, чем, например, стальные.

Автомобилестроение, текстильная промышленность, полиграфия, радиотехника, производство оптических приборов — где только не применяются сегодня легкие магниевые сплавы! Немаловажную роль играет этот элемент и в металлургии. Его применяют как восстановитель в производстве ряда металлов (ванадия, хрома, титана, циркония). Магний помогает раскислять сталь и сплавы — уменьшает содержание в них кислорода, оказывающего вредное влияние на металл.

Введенный в расплавленный чугун, магний модифицирует его, т.е. улучшает структуру и повышает многие механические свойства. Отливки из модифицированного чугуна с успехом заменяют стальные поковки. Но магний очень неохотно вступает в контакт с расплавом: из-за своей легковесности он не желает погружаться в жидкий металл, а, оставаясь на поверхности, ярко вспыхивает и разбрызгивает чугун из ковша. Вполне понятно, что такой фейерверк не устраивал металлургов. Выход удалось найти: из смеси магния, вспененной пластмассы и других компонентов решено было прессовать брикеты, с находящимся внутри их стальным стержнем, играющим роль грузила. Такой брикет уже послушно " ныряет" в расплавленный чугун. Добавки, обволакивающие магний, спокойно сгорают, не давая загореться вспыльчивому металлу. Стальной стержень быстро тает и растворяется в расплаве, а оставшемуся в одиночестве магнию ничего не остается делать, как приступать к модифицированию чугуна.

Химическая активность магния навела конструкторов гидросооружений на интересную мысль: погрузив магниевый лист в воду и соединив его проводником с подводной металлической конструкцией, можно создать своеобразный гальванический элемент огромных размеров, в котором вода служит электролитом. Магниевый лист, выполняющий функции активного электрода, постепенно разрушается, но зато надежно сохраняет металл основной конструкции. Такой магниевой защитой снабжены стальные и железобетонные эстакады, являющиеся фундаментом Нефтяных Камней — поселка промысловиков в Каспийском море.

Под водой для магния нашлась и другая работа: из сплавов этого металла в Англии изготовлен глубоководный скафандр, способный выдержать большие гидростатические давления. Недалеко то время, когда в таком легком и прочном одеянии геологи, буровики, монтажники будут вести на морском дне работы, связанные с добычей полезных ископаемых.

Свойство магния (в виде порошка, проволоки или ленты) гореть белым ослепительным пламенем широко используют в военной технике — для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. До недавнего времени с этим элементом были хорошо знакомы фотографы: " Спокойно! Снимаю! " — и яркая вспышка магниевого порошка озаряла лица желавших запечатлеть себя для потомства. Сейчас в этой роли магний уже не выступает — мощные электрические лампы вынудили его подать в отставку.

Но вряд ли это печалит магний: у него есть дела и поважней. Ведь он участвует в грандиозной работе — аккумуляции солнечной энергии. Магний входит в состав хлорофилла — великого чародея, который поглощает солнечную энергию и с ее помощью превращает углекислый газ и воду в сложные органические вещества (сахар, крахмал и др.), необходимые для питания человека и животных. Процесс образования органических веществ, называемый фотосинтезом (от греческого слова " фотос" — свет), сопровождается выделением из листьев кислорода. Без хлорофилла не было бы жизни, а без магния не было бы хлорофилла — ведь в его составе 2 % этого элемента. А много ли это? Судите сами: общее количество магния только в хлорофилле растений составляет около 100 миллиардов тонн! Помимо растений, магний входит в состав практически всех живых организмов. Если вы весите, допустим, 60 килограммов, то примерно 25 граммов из них — это магний.

В середине 60-х годов полезную работу провели ученые Миннесотского университета в США, избравшие объектом научного исследования яичную скорлупу. Им удалось установить, что скорлупа тем прочнее, чем больше она содержит магния. Значит, изменяя состав корма для несушек, можно повысить ее прочность. О том, сколь важен этот вывод для сельского хозяйства, можно судить хотя бы по таким цифрам: только в штате Миннесота ежегодные потери из-за боя яиц превышают миллион долларов. Уж тут никто не скажет, что эта работа ученых яйца выеденного не стоит.

Магний широко используют в медицине: мы уже упоминали об " английской соли" (сульфат магния, или сернокислая магнезия), которая служит надежным слабительным. Чистый оксид магния (жженая магнезия) применяется при повышенной кислотности желудочного сока, изжоге, отравлении кислотами. Пероксид магния — известное дезинфицирующее средство при желудочных расстройствах.

Статистика утверждает, что у жителей районов с более теплым климатом спазмы кровеносных сосудов встречаются реже, чем у северян. Известно, что внутривенные и внутримышечные вливания растворов некоторых солей магния снимают спазмы и судороги. Накопить в организме необходимый запас этих солей помогают фрукты и овощи (особенно богаты магнием абрикосы, персики и цветная капуста). В Азии, например, где пищевой рацион богаче магнием, атеросклероз и другие сердечные заболевания встречаются реже, чем в Европе или США. Английские врачи рекомендуют съедать ежедневно по четыре банана, чтобы покрывать примерно половину суточной потребности организма в магнии (она составляет 0, 3-0, 5 грамма).

Опыты, проведенные венгерскими учеными на животных, подтвердили, что недостаток магния в организме повышает предрасположенность к инфарктам. Одним собакам давали пищу, богатую солями этого элемента, другим — бедную. В конце эксперимента животные, в рационе которых было мало магния, " заработали" инфаркт миокарда.

У нервных, легко возбудимых людей нарушения работы сердечных мышц наблюдаются значительно чаще, чем у спокойных. Это объясняется тем, что в момент раздражения магний, содержащийся в организме, " сгорает".

Французские биологи считают, что этот элемент поможет медикам и в борьбе с таким серьезным недугом XX века, как переутомление. Исследования показали, что в крови уставших людей содержится меньше магния, чем у людей полных сил, а даже самые ничтожные отклонения " магниевой кривой" от нормы не проходят бесследно.

Биологи Франции установили любопытное влияние ряда элементов на пол потомства. Оказывается, избыток калия в пище матери приводит к тому, что у нее рождается потомство преимущественно мужского пола. Если же ее пища насыщена кальцием и магнием, то в потомстве преобладает женский пол. Возможно, уже вскоре для будущих матерей врачи разработают специальные меню, гарантирующие рождение мальчика или девочки " по заказу". Но прежде нужно будет уточнить, распространяется ли подмеченное влияние этих элементов на человека: ведь описанные наблюдения относятся к... коровам.

Область применения магниевых соединений не исчерпывается медициной. Так, оксид магния используют в резиновой промышленности, в производстве цементов, огнеупорного кирпича. Одна из канадских фирм разработала технологию получения нового огнеупорного материала, стойкого к воздействию шлаков, обладающего высокой прочностью и малой пористотью; основным компонентом этого огнеупора служит оксид магния высокой чистоты.

Как известно, обычные радиолампы начинают нормально работать лишь после того, как они нагреваются. Каждый раз, когда вы включаете радиоприемник или телевизор, приходится некоторое время ждать, прежде чем польются звуки музыки или замерцает голубой, экран. Чтобы устранить этот недостаток радиоламп, польские ученые предложили покрывать катоды оксидом магния: новые лампы приступают к работе тотчас же после включения.

Еще в 1867 году француз Сорель смешал прокаленный оксид магния с концентрированным раствором его хлорида и получил так называемый магнезиальный цемент (или цемент Сореля). В наши дни с помощью этого вяжущего вещества изготовляют легкие, огнестойкие, звуконепроницаемые строительные материалы: фибролит —

<== предыдущая лекция | следующая лекция ==>
Счастливая встреча из глубин тысячелетий | Введение. Методические рекомендации




© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.