Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Описати суть трансформації координат методом Гельмерта






    Трансформацію координат можна виконати, якщо відомі координати пунктів в обох системах або параметри (“ключі”) переходу. Існує декілька способів розв’язку задачі для кожного з яких необхідна мінімальна кількість вихідних пунктів. Розв'язок буде найбільш достовірним якщо таких пунктів буде більше, що дозволить виконати трансформацію за методом найменших квадратів і оцінити точність отриманих результатів. Трансформація може бути виконана наступними способами:

    1. Перетворення методом Гельмерта, при цьому ні кути, ні довжини сторін не деформуються

    2. Афінне перетворення, можуть деформуватися і кути і лінії.

    В першому випадку перетворення відбуваються зі збереженням масштабу.

    Ми розглянемо перетворення двовимірних координат, тому що в сфері землеустрою це завдання виникає найчастіше.

     

    Рис. 6.1.

    Два різних набори планових геодезичних координат містяться у векторах та . Двовимірне перетворення подібності Гельмерта описується формулою:

    (6.1)

    де μ – масштабний множник;

    – матриця повороту (6.3)

    Рівняння (6.1) в поєднанні з формулами (6.2) і (6.3) є двовимірним перетворенням Гельмерта з чотирма параметрами, зокрема двома компонентами зсуву с1 та с2, масштабним множником μ, а також кутом повороту . Підстановка рівняння (6.2) і (6.3) у вираз (6.1) дає формули для розрахунку координат точок:

    (6.4)

    Якщо параметри перетворення відомі то за їх допомогою рівняння (6.4) координати з системи можна перетворити в систему . У випадку якщо параметри не відомі, то їх можна визначити використовуючи координати двох спільних точок, застосовуючи допоміжні невідомі:

    (6.5)

    Можна записати лінійне рівняння відносно невідомих:

    Розглянувши систему цих рівнянь можна зробити висновок, що достатньо мати координати двох точок для розв'язку системи:

    (6.8)

    Для визначення значень невідомих параметрів достатньо мати координати трьох точок в початковій і кінцевій системі координат, або ж параметри переходу.

    Формули Гельмерта використовують в тих випадках, коли локальна мережа при трансформації координат її пунктів в іншу систему координат зберегла свої початкові форму і розміри. Це дуже важливо в тих випадках, коли існують юридичні документи на земельну ділянку (державний акт).






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.