Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тема 5. Барометрическая формула. Распределение Больцмана.






Барометрическая формула определяет зависимость атмосферного давления воздуха от высоты. Молекулы воздуха находятся, с одной стороны, в потенциальном поле сил тяготения Земли, а, с другой –, в состоянии теплового хаотического движения, что приводит к некоторому стационарному состоянию, при котором давление газа с высотой убывает.

Если атмосферное давление на высоте h равно р (рис. 4), то на высоте h+dh оно равно p+dp, причем при dh > 0 изменение давления dp < 0.

Так как dh настолько мало, что при изменении высоты h в этих пределах плотность воздуха можно считать постоянной, то разность давлений:

, то есть .

Рис. 4

Выражение для плотности газа можно получить из уравнения состояния идеального газа , а именно ,

где m – масса газа, – молярная масса газа.

Тогда или .

С изменением высоты от 0 до h давление изменяется от р 0 до р (рис. 4). Поэтому, интегрируя в этих пределах предыдущее уравнение, получим:

, то есть ,

откуда

.

Это выражение называется барометрической формулой, где р 0 – давление на нулевом уровне отсчета высоты h, то есть на уровне, где принято h = 0.

Барометрическую формулу можно преобразовать в зависимость концентрации молекул воздуха n от высоты h, если воспользоваться уравнением состояния идеального газа p=nkT:

,

где n – концентрация молекул воздуха на высоте h,

n 0 – концентрация молекул воздуха на высоте h= 0.

Так как (m 0 – масса одной молекулы, – постоянная Авогадро), a , то или .

В этой формуле , где U – потенциальная энергия молекулы массой m 0, находящейся в поле сил тяготения Земли на высоте h от уровня, на котором потенциальная энергия молекул воздуха принята равной нулю, а концентрация молекул обозначена как n 0. Тогда n соответствует концентрации молекул в том месте, где потенциальная энергия молекулы воздуха равна U. Таким образом, получено распределение молекул по потенциальной энергии в силовом поле (распределение Больцмана).






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.