Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Тема 10. Механика жидкости. Уравнение Бернулли
Гидростатика. Для несжимаемой жидкости ее плотность не зависит от давления. При поперечном сечении S столба жидкости плотностью r ивысотой h давление жидкости р на нижнее основание: . Давление называется гидростатическим давлением. Гидродинамика. Графически движение жидкостей изображается с помощью линий тока, которые проводятся так, что касательные к ним совпадают по направлению с вектором скорости жидкости в соответствующих точках пространства (рис. 9). Линии тока проводятся таким образом, чтобы их густота характеризовала величину скорости: густота больше там, где больше скорость течения жидкости, и меньше там, где жидкость течет медленнее. Часть жидкости, ограниченную линиями тока, называют трубкой тока ( рис. 10 ). Течение жидкости называется установившимся (или стационарным), если форма и расположение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются. Рис. 9 Рис. 10 Уравнение неразрывности струи для несжимаемой жидкости. Рассмотрим какую-либо трубку тока. Выберем два ее сечения S 1 и S 2 , перпендикулярные направлению скорости (рис. 10). За время Dt через сечение S 1 проходит объем жидкости , где – скорость течения жидкости в месте сечения S 1 , а через сечение S 2 за тоже время Dt пройдет объем жидкости , где – скорость течения жидкости в месте сечения S 2 . Если жидкость несжимаемая, то через сечение S 2 пройдет такой же объем жидкости, как и через сечение S 1 , т. е. . Так как положения сечений S 1 и S 2 выбраны произвольно, то отсюда следует, что вдоль данной трубки тока . Это соотношение называется уравнением неразрывности
Уравнение Бернулли. Бернулли рассмотрел изменения гидродинамических параметров вдоль произвольно выбранной трубки тока стационарно текущей жидкости плотностью r (рис. 11). Рис. 11 В месте сечения трубки тока S 1 скорость течения жидкости , давление p 1 и высота, на которой это сечение расположено относительно выбранного уровня отсчета, h 1. Аналогично, в месте сечения трубки тока S 2 скорость течения жидкости , давление p 2 и высота расположения этого сечения над тем же уровнем отсчета h 2 . Бернулли установил, что для любых двух сечений одной трубки тока несжимаемой жидкости выполняется равенство: . Так как положения сечений было выбрано произвольно, то для любой трубки тока несжимаемой жидкости гидродинамические параметры жидкости подчиняются следующему уравнению (уравнению Бернулли): . Для горизонтальной трубки тока (h = const) уравнение Бернулли принимает вид: , где величина называется полным давлением, величина р называется статическим давлением, величина называется динамическим давлением. Из уравнения Бернулли для горизонтальной трубки тока и уравнения неразрывности струи следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление, наоборот, в местах сужения меньше.
. Так как давления р 1 и р 2 жидкости на уровнях первого и второго сечений равны атмосферному, то р 1 =р 2 , а полученное соотношение примет вид: . Из уравнения неразрывности струи следует, что , где S 1 и S 2 – площади поперечных сечений сосуда и отверстия. Так как S 1 > > S 2 , то и членом можно пренебречь. Тогда , откуда . Это выражение получило название формулы Торричелли, где h – высота свободной поверхности жидкости в сосуде над уровнем отверстия. Формула Торричелли справедлива только для идеальной жидкости, то есть для жидкости, в которой отсутствует вязкость или внутреннее трение. Только в этом случае скорость истечения жидкости из малого отверстия такая же по величине, как и скорость тела, свободно падающего с высоты h.
|