Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Кинематика вращательного движения






Пусть некоторая точка движется по окружности радиуса r. Изменение положения точки в пространстве за промежуток времени D t определяется углом поворота (рис. 3). Элементарный поворот на угол можно рассматривать как вектор . Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия правого винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняется правилу правого винта.

 

 


Рис. 3

Угловой скоростью называется векторная величина, равная пределу отношения угла поворота к промежутку времени D t, за который этот поворот произошел, при стремлении D t к нулю:

,

где – первая производная от функции угла поворота радиус-вектора по времени t. Эту производную принято обозначать, как .

Вектор направлен вдоль оси вращения в соответствии с правилом правого винта (рис. 3).

Угловым ускорением называется векторная величина, равная пределу отношения изменения угловой скорости к промежутку времени D t, за который это изменение произошло, при стремлении D t к нулю:

,

где – первая производная от функции по времени t,

– вторая производная от функции по времени t.

Эти производные принято обозначать соответственно в виде: и .

Вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном вращении направление вектора совпадает с направлением вектора угловой скорости , а при замедленном – противоположно ему.

Кинематические параметры поступательного и вращательного движения связаны между собой. Связь скорости и угловой скорости (см. рис. 3) определяется следующим образом: .

В векторном виде эту связь для векторов и можно записать с помощью векторного произведения: .

Ускорение а также можно выразить через угловые параметры, разложив ускорение а на две составляющие и , то есть: .

Тангенциальная составляющая выражается через угловое ускорение :

,

а нормальная составляющая – через угловую скорость :

.

Тогда ускорение: .

При равномерном вращении угловая скорость не изменяется. В этом случае вращение можно характеризовать периодом вращения T, то есть временем, за которое точка совершает один полный оборот.

Угловая скорость равномерного вращения связана с периодом вращения:

.

Частотой вращения n называется число полных оборотов, совершаемых телом в единицу времени. При равномерном вращении:

, откуда .






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.