Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Сжатие данных с помощью сингулярного разложения матрицы
Пусть для матрицы имеется сингулярное разложение . Теорема. Если , где , - столбцы матрицы , а , где , - столбцы матрицы , сингулярное разложение матрицы можно представить в форме внешних произведений: ,
т.е. в виде суммы матриц , ранга 1. Тогда ближайшая к (в смысле спектральной матричной нормы ) матрицей ранга является матрица
,
называемая малоранговой аппроксимацией матрицы (или аппроксимацией матрицы ранга ), причем .
Для матрицы справедливо также представление
,
где . Приведенная теорема используется для сжатия изображений. Изображение размера - это попросту матрица, элемент которой интерпретируется как яркость точки (пикселя) . Другими словами, элементы матрицы, изменяющиеся от 0 до 255, интерпретируются как точки с окраской от черной (что соответствует 0) до белой (что соответствует 255) с различными промежуточными степенями серого цвета (возможны и цветные изображения, тогда там будут фигурировать 3 матрицы). Вместо того, чтобы хранить или передавать все элементов матрицы, представляющей изображение, часто бывает предпочтительным сжатие этого изображения, т.е. хранение гораздо меньшего массива чисел, с помощью которых исходный образ все же может быть приближенно восстановлен. Проиллюстрируем это на примере изображения размером (рис.1), матрицу которого обозначим . При построении сингулярного разложения матрицы этого изображения будет вычислено 480 СНЧ. Согласно предыдущей теоремы матрица есть наилучшее приближение ранга матрицы в том смысле, что она реализует минимум величины . Заметим, что для восстановления матрицы требуется лишь слов памяти, в которых хранятся векторов длины и векторов длины . В то же время дляхранения (или той же матрицы , но в явном виде) нужны слов, т.е. гораздо большая память при малом . Будем рассматривать как сжатое изображение, хранимое с помощью слов памяти. Эти приближенные изображения для различных значений приведены на рис.2, 3. Выигрыш в памяти здесь составит . Результаты эксперимента приведены в табл.1. Таблица 1 -
Рис.1. Исходное изображение
Рис. 2. Сжатое изображение. Ранг аппроксимации равен 20
Рис. 3. Сжатое изображение. Ранг аппроксимации равен 160
|