Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Сжатие данных с помощью сингулярного разложения матрицы
Пусть для матрицы имеется сингулярное разложение .
Теорема. Если , где , - столбцы матрицы , а , где , - столбцы матрицы , сингулярное разложение матрицы можно представить в форме внешних произведений:
,
т.е. в виде суммы матриц , ранга 1. Тогда ближайшая к (в смысле спектральной матричной нормы ) матрицей ранга является матрица
,
называемая малоранговой аппроксимацией матрицы (или аппроксимацией матрицы ранга ), причем
.
Для матрицы справедливо также представление
,
где .
Приведенная теорема используется для сжатия изображений. Изображение размера - это попросту матрица, элемент которой интерпретируется как яркость точки (пикселя) . Другими словами, элементы матрицы, изменяющиеся от 0 до 255, интерпретируются как точки с окраской от черной (что соответствует 0) до белой (что соответствует 255) с различными промежуточными степенями серого цвета (возможны и цветные изображения, тогда там будут фигурировать 3 матрицы). Вместо того, чтобы хранить или передавать все элементов матрицы, представляющей изображение, часто бывает предпочтительным сжатие этого изображения, т.е. хранение гораздо меньшего массива чисел, с помощью которых исходный образ все же может быть приближенно восстановлен. Проиллюстрируем это на примере изображения размером (рис.1), матрицу которого обозначим . При построении сингулярного разложения матрицы этого изображения будет вычислено 480 СНЧ. Согласно предыдущей теоремы матрица есть наилучшее приближение ранга матрицы в том смысле, что она реализует минимум величины . Заметим, что для восстановления матрицы требуется лишь слов памяти, в которых хранятся векторов длины и векторов длины . В то же время дляхранения (или той же матрицы , но в явном виде) нужны слов, т.е. гораздо большая память при малом . Будем рассматривать как сжатое изображение, хранимое с помощью слов памяти. Эти приближенные изображения для различных значений приведены на рис.2, 3. Выигрыш в памяти здесь составит . Результаты эксперимента приведены в табл.1.
Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок.
— Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта.
— Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы).
— SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание.
SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз,
а первые результаты появляются уже в течение первых 7 дней.
Зарегистрироваться и Начать продвижение
Таблица 1 -
Коэффициент малоранговой аппроксимации
| Выигрыш в памяти при использовании малоранговой аппроксимации
|
|
|
|
|
|
|
|
|
|
|

Рис.1. Исходное изображение

Рис. 2. Сжатое изображение. Ранг аппроксимации равен 20

Рис. 3. Сжатое изображение. Ранг аппроксимации равен 160
|