Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Связь между сингулярным и спектральным разложениями матрицы






    Сингулярное разложение матрицы общего вида тесно связано со спектральными разложениями симметричных матриц

     

    , , .

     

    Рассмотрим эту связь подробно.

    Утверждение 1. Пусть есть сингулярное разложение -матрицы в соответствии с (1). Если симметричная матрица с СЗ и СВ , т.е. есть спектральное разложение , то в сингулярном разложении матрицы , , причем .

    Утверждение 2. Пусть есть сингулярное разложение -матрицы в соответствии с (1). Собственными значениями симметричной матрицы являются , а правые СНВ — ортонормированные СВ .

    Доказательство. Для матрицы имеет место соотношение:

     

    . (2)

     

    Равенство (2) очевидно представляет спектральное разложение матрицы , причем — ее СВ, а диагональные элементы — СЗ.

    Утверждение 3. Пусть есть сингулярное разложение -матрицы в соответствии с (1). Собственными значениями симметричной матрицы являются . Левые СНВ — ортонормированные СВ , соответствующие СЗ .

    Доказательство. Аналогично доказательству утверждения 2.

    Утверждение 4. Пусть , где — квадратная -матрица, причем есть сингулярное разложение в соответствии с (1). Тогда СЗ матрицы — это числа , а соответствующие нормированные СВ имеют вид .

    Доказательство. Поскольку матрица симметричная, то

     

    . (3)

     

    Из (3) вытекает, что — блочно-диагональная матрица, а значит ее спектр является объединением спектров блоков. Спектры блоков , — это . Обозначим спектральное разложение матрицы

     

    .

     

    Поскольку

    , (4)

     

    т.е. (4) — спектральное разложение , то СЗ — это квадраты СЗ , а значит СЗ определяются как , и первая часть утверждения доказана.

    Для доказательства второй части проверим непосредственно, что вектор является СВ матрицы :

    . (5)

     

    Рассмотрим составляющие правой части (5):

     

    . (6)

     

    Аналогично (6) показывается, что

     

    . (7)

     

    Учитывая (6) и (7), из (5) вытекает

     

    ,

     

    из чего по определению следует, что — СВ матрицы , отвечающий СЗ , который после нормирования становится равным .

    Опираясь на установленную связь между сингулярным и спектральным разложениями соответствующих матриц, можно преобразовать алгоритмы решения симметричной проблемы СЗ в алгоритмы вычисления сингулярного разложения. Это преобразование выполняется не прямолинейно, поскольку сингулярное разложение обладает дополнительной структурой, которая часто может быть использована для повышения эффективности и точности алгоритмов.

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.