Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Два представления о сходимости QR-, QL-алгоритмов
Рассмотрим вопрос о сходимости -алгоритма. Если сдвиги не используются, то -алгоритм называется основным. Вообще с , -алгоритмами связаны два представления о сходимости. Строго говоря, сходимость , -алгоритмов нужно понимать как сходимость матричной последовательности . В общем случае можно показать, что такая последовательность сходится к диагональной матрице, на диагонали которой находятся собственные значения исходной матрицы (симметричной). Если - несимметричная матрица, то матричная последовательность сходится к блочно-диагональной матрице, каждый диагональный блок которой отвечает собственному значению. Однако можно понимать сходимость несколько иначе. Теорема (случай симметричной матрицы). Пусть собственные значения матрицы удовлетворяют условию: .
Пусть матричная последовательность получена основным -алгоритмом, тогда имеет место равенство: , где . В соответствии с приведенной теоремой сходимость понимается как стремление к 0 внедиагональных элементов первого столбца матрицы. На практике как только становится малой, это означает, что элемент можно рассматривать как приближенное значение собственного значения . После этого, если не является кратным, итерационный процесс можно продолжить для матрицы размера , отбросив первую строку и первый столбец, и т.д.
|