Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Незатухающие гармонические колебанияСтр 1 из 22Следующая ⇒
Гармонические колебания совершаются под действием упругих или квазиупругих (подобные упругим) сил, описываемых законом Гука: , где F – сила упругости; х –смещение; k – коэффициент упругости или жесткости. Согласно ІІ закону Ньютона , где а – ускорение, а = .
Разделим уравнение (1) на массу m и введем обозначение , получим уравнение в виде: (2). Уравнение (2) – дифференциальное уравнение незатухающих гармонических колебаний. Его решение имеет вид: или . Характеристики незатухающих гармонических колебаний: х – смещение; А – амплитуда; Т – период; – частота; – циклическая частота, – скорость; – ускорение, – фаза; 0 – начальная фаза, Е – полная энергия. Формулы:
|