Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Формула (закон) Пуазейля
Основной движущей силой является кровяное давление, обусловленное превышением давления, вызванного работой сердца, над атмосферным. , где – разность давлений на входе и выходе сосуда; – гидравлическое сопротивление сосуда; , – длина сосуда, – внутренний радиус сосуда, – динамический коэффициент вязкости жидкости.
Давление крови в сосудах зависит от объемной скорости кровотока, радиуса сосуда, вязкости крови. Согласно формуле объемная скорость кровотока пропорциональна градиенту давления: ~ (градиент давления) и обратно пропорциональна вязкости. Однако может показаться удивительным, что ~ (радиус в четвертой степени). Это означает, что при одном и том же градиенте давления увеличение радиуса вдвое приводит к увеличению объемной скорости кровотока в 16 раз! Интересный пример зависимости ~ можно найти и в системе кровообращения человеческого организма. Поскольку формула Пуазейля справедлива лишь для ламинарного течения несжимаемой жидкости с постоянной вязкостью, то она не может в точности выполнятся для крови. Так как кровь содержит взвешенные частицы, то течение крови не вполне ламинарно, а ее вязкость зависит от скорости течения. В этом случае формула Пуазейля является хорошим приближением в первом порядке. Однако, при атеросклерозе и отложении холестерина радиус сосудов уменьшается и тогда для поддержания нормального кровотока требуется более высокий градиент давления.
|