Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Таблично задана лінія регресії






    k xk
      53, 95 102, 27 169, 40 239, 93 342, 84 434, 10

     

    Для наочності побудуємо графік лінії регресії. Для цього в прямокутній системі координат зобразимо точки з координатами (xk; ) (тобто кореляційне поле) і послідовно сполучимо їх відрізками прямих (див. рис.3.7).

    Із аналізу таблиці 3.6 і графіка (рис. 3.7) можна зробити такий висновок: більшим витратам на утримання відповідають більші перерахування до бюджету, що підтверджує попередній висновок про можливість існування прямого зв’язку між Х та Y, зроблений за результатами комбінаційного групування. При цьому із вигляду графіка можна припустити, що зростання Y має, можливо, сповільнений характер.

     

    Рис. 3.7. Графік таблично заданої лінії регресії

    3. Метод дисперсійного аналізу (п. 2.3)

    Усю сукупність 20-ти пар (хі; уі), що вивчається, розділимо за факторною ознакою на 3 групи, використавши поділ, зроблений у таблиці 3.5. За формулою (3.1) обчислимо загальну середню для всієї сукупності значень уі (і = ):

    .

    За формулою (3.3) обчислимо загальну дисперсію ознаки Y:

    .

    За формулою (3.6) обчислимо міжгрупову дисперсію, використавши раніше знайдені значення групових середніх (табл. 3.6) і частот fk (табл. 3.4):

    .

    За формулою (3.8) обчислюємо спостережене значення кореляційного відношення:

    звідки витікає, що 74, 7 % загальної варіації ознаки Y пов’язано з варіацією ознаки Х, а це свідчить про можливість існування залежності Y від Х.

    Для формального підтвердження або спростування даного припущення знайдемо критичне значення величини η 2 для рівня значущості . За таблицею критичних значень (додаток 2) для степенів вільності k 1 =m– 1=3–1=2, k 2 =n–m =20–3=17 знаходимо = =0, 297. Оскільки , то з імовірністю =0, 95 можна вважати, що Y істотно залежить від Х. Для оцінки щільності зв’язку застосовуємо правило трисекції: 0, 7 + 0, 3=0, 508; 0, 3 + 0, 7=0, 789. Оскільки [0, 7 + 0, 3; 0, 3 + 0, 7], то щільність зв’язку будемо вважати помірною.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.