![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вопрос 16. Энергетический спектр случайных сигналов
Одним из эффективных средств анализа сигналов является частотный метод, основанный на представлении сигналов при помощи преобразования Фурье, а цепи – в виде частотной передаточной характеристики. Естественным является использовать математический аппарат частотного метода для анализа случайных процессов. Но случайный процесс, представляющий собой множество (ансамбль) детерминированных реализаций, не может быть описан комплексной спектральной плотностью, даже и усредненной, так как из-за случайности и независимости фаз составляющих в различных реализациях усреднение приводит к нулевому результату (при mx =0). Однако можно ввести понятие спектральной плотности среднего квадрата случайного сигнала, поскольку средний квадрат не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией x(t) подразумевается электрическое напряжение или ток, то её средний квадрат можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе частот, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте. Её размерность определяется отношением мощности к полосе частот, т. е. является размерностью энергии. Для определения спектральной плотности случайного сигнала выделим из ансамбля одну реализацию xk(t) длительностью Т. Для неё как для детерминированной функции может быть определена спектральная плотность: T/2 XK T (w)=ò xk (t) e-jσ xdt -T/2 Полная энергия рассматриваемого отрезка k -й реализации равна отсюда получаем среднюю мощность При увеличении интервала Т энергия отрезка возрастает, однако средняя мощность (из-за 1/T) стремится к некоторому пределу Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение где Wk(w) представляет собой спектральную плотность мощности k -й реализации. Спектральная плотность процесса Wx(w) получается усреднением по всем реализациям. Если процесс стационарный и эргодический, то Wk(w) характеризует весь процесс в целом, и усреднения не требуется, то есть Wх (w) = Wk(w). Если случайный процесс имеет ненулевое математическое ожидание, то спектральную плотность следует представлять в форме Wx(w)=mx 22π δ (w)+W*(w) где W*(w) – cплошная часть спектра, соответствующая флуктуационной составляющей. При интегрировании по частоте f=w /2π первое слагаемое дает величину mx2, то есть мощность постоянной составляющей, а второе – мощность флуктуаций, то есть дисперсию +∞ Dx=σ x 2 = ò W*x (w)dw -∞ Поскольку спектральная плотность мощности случайного процесса определяется как модуль квадрата спектральной плотности реализации, то функция Wx(w) является неотрицательной и четной.
|