Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Образование хелатных комплексов






Известно много веществ (лигандов), способных связываться с металлами. Они часто образуют с ними хелатные соединения. Если металл оказывается заключенным в лиганде между такими элементами, как N, O или S, то образуется хелатное кольцо.

В зависимости от количества вступивших во взаимодействие атомов металлов и лиганд могут образовываться комплексы 1: 1, 1: 2 и др.

Рассмотрим три основных вида лигандов, образующих одно кольцо в комплексе 1: 1 (бидентатные лиганды). На рис. 7.2 представлены три основных типа хелатных соединений.

Рис. 7.2. Три основных типа комплексов (стехиометрия 1: 1)

Стрелки в кольце показывают направление смещения в норме неподеленной пары электронов от атомов O, N или S к металлу

При содержании двух электронодонорных групп заряд катиона металла при образовании хелатного соединения не меняется (этилендиамин). Лиганды могут содержать также одну электронодонорную и одну анионную группы, как в глицине. В этом случае заряд металла уменьшается на единицу. И наконец, лиганд может содержать две анионные группы (например, щавелевая кислота), в этом случае заряд металла уменьшается на две единицы. Образование хелатных связей атомами кислорода и азота происходит обычно лишь в тех случаях, когда при этом получаются пяти- и шестичленные циклы. Пятичленные циклы значительно стабильнее. Однако при образовании хелатных связей через серу возникают устойчивые четырехчленные циклы (рис. 7.3).

Рис. 7.3. Комплекс медь-диметилдитиокарбамат

Комплексы в соотношении 2: 1 могут образовываться в присутствии избытка лигандов. Лиганды типа щавелевой кислоты используют заряд для образования комплексов 1: 1, однако они могут соединяться в дальнейшем с комплексом этилендиаминового типа, образуя смешанные комплексы. Комплексы 1: 1 глицинового типа способны соединяться с другими лигандами этого типа. Комплекс 1: 1, образованный лигандами, подобными этилендиамину, может соединяться с любым из трех типов лигандов.

Для оценки прочности связей (варьирующейся в широких пределах для разных комплексов) применяют константы устойчивости, характеризующие равновесие между одним или несколькими лигандами и одним ионом металла, подчиняющееся закону действия масс. Так, для комплекса в соотношении 1: 1 константа устойчивости (q) рассчитывается следующим образом:

 

q = –––––––, (7.1)

 

где в числителе находится концентрация комплекса, а в знаменателе – концентрация образующих его компонентов.

Часто необходимо знать общую константу устойчивости (b), представляющую собой произведение частных констант. Произведение двух частных констант обозначают как b2 (b2 = q1× q2 в случае соединения катиона металла с двумя молекулами лиганда, с тремя молекулами – b3= q1× q2× q3 и т. д.).

Константы устойчивости обычно определяют потенциометрическим титрованием лигандов в присутствии или отсутствии металла и обработкой результатов посредством довольно сложных вычислений.

Следует подчеркнуть, что понятие «лиганд» относится не ко всем присутствующим в системе молекулам органического соединения, а только к части, находящейся в соответствующей форме, которая может связывать катион металла. В случае этилендиамина, глицина и щавелевой кислоты лигандами могут служить неионизированные молекулы, моно- и дианионы соответственно. Поэтому, если при сравнении относительной реакционной способности лигандов при физиологических условиях пользуются константами устойчивости, необходимо учитывать и значения рКа лигандов.

По сравнению с ферментами, обладающими высокой специфичностью в отношении определенного металла, среди синтетических металлосвязывающих агентов подобная избирательность встречается значительно реже. Металлы по своему сродству к большинству хелатирующих агентов располагаются примерно в следующем порядке (от наибольшего сродства к наименьшему):

Fe3+, Hg2+, Cu2+, Al3+, Ni2+, Pb2+, Co2+, Zn2+, Fe2+, Cd2+, Mn2+, Mg2+, Ca2+, Li+, Na+, K+.

Некоторые из приведенных двухвалентных металлов расположены друг за другом в периодической системе следующим образом (в скобках указаны атомные номера): Mn (25), Fe (26), Co (27), Ni (28), Cu (29), Zn (30). В этом ряду, называемом первым рядом переходных элементов, сродство к хелатирующим агентам последовательно увеличивается, достигая максимума у меди (Cu2+). Повышение сродства к хелатирующим агентам является следствием уменьшения ионного радиуса. Эта зависимость позволяет объяснить последовательность расположения металлов в приведенном выше ряду. С увеличением валентности металла происходит уменьшение его радиуса, поэтому неудивительно, что Fe3+ имеет большее сродство, чем Fe2+, и ионы трехвалентных металлов располагаются в начале ряда, тогда как одновалентные – в конце. Приведенный порядок увеличения сродства металлов к хелатирующим агентам сохраняется для большинства лигандов.

Хелатообразование зависит от степени ионизации хелатообразующих агентов. Вещества, обладающие меньшим сродством к металлам (на что указывает более низкая константа устойчивости), за счет различий в значениях рКа могут образовывать значительно больше анионов, чем другие агенты.

В этом случае вещество, обладающее меньшим сродством к металлу, может присоединить большее количество катионов металла, чем вещества, у которых это сродство больше. Это объясняется тем, что для хелатообразования необходимо не только наличие сродства между лигандом и металлом, но также быстрое образование анионов лиганда из агента (или молекул лиганда). Таким образом, существует своего рода конкуренция между константами устойчивости и константами ионизации.

Большинство металлов легче соединяются с лигандами, содержащими кислород, чем серу. Однако Cu+, Ag+, Hg2+, As+ и Sb3+ отдают предпочтение сере; у Cu2+, Ni2+ и Co2+ сродство к сере несколько выше, чем к кислороду, если сера находится в неионизированном состоянии, как, например, в органических сульфидах.

Еще одним фактором, влияющим на относительное сродство ряда металлов, служит изменение окислительно-восстановительного потенциала металла, вызванного образованием хелатных соединений с металлами, имеющими переменную валентность (например, Cu, Fe, Co, Mn, Mo, V).

Вследствие хелатообразования такие металлы могут даже изменять первоначальную валентность.

Следует помнить, что величины потенциалов колеблются от +2 В для наиболее сильных окислителей до –2 В для самых сильных восстановителей. В качестве примера можно привести соединения кобальта. Соли двухвалентного кобальта обычно устойчивы в водных растворах, тогда как соли трехвалентного кобальта мгновенно разлагаются водой с выделением кислорода. Тем не менее после образования хелатного соединения с этилендиамином потенциал падает настолько резко, что комплекс с двухвалентным кобальтом легко окисляется до более стабильного соединения.

Рассматривая другие аспекты взаимодействия металл–лиганд, следует отметить, что металл может изменять избирательность органического лиганда: а) влияя на распределение электронов в лиганде; б) повышая реакционную способность активного центра лиганда; в) вызывая изменение конформации лиганда; г) обеспечивая возможность присоединения или отрыва электрона; д) увеличивая липофильность лиганда и, следовательно, его способность проникать в живую клетку.

Общие химические свойства

Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы — COOH, так и основные свойства, обусловленные аминогруппой — NH 2. Аминокислоты взаимодействуют с кислотами и щелочами:

NH 2CH 2COOH + HCl → HClNH 2CH 2COOH (хлороводородная соль глицина)

NH 2CH 2COOH + NaOH → H 2 O + NH 2CH 2COONa (натриевая соль глицина)

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.

NH 2CH 2 COOH N + H 3CH 2 COO -

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Этерификация:

NH 2CH 2COOH + CH 3 OH → H 2 O + NH 2CH 2COOCH 3 (метиловый эфир глицина)

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Реакция образования пептидов:

HOOCCH 2NHH + HOOCCH 2NH 2 → HOOCCH 2NHCOCH 2NH 2 + H 2 O

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pHаминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3+, а карбоксигруппа — в виде -COO. Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Вопрос 105

Пептиды (греч. π ε π τ ο ς — питательный) — семейство веществ, молекулы которых построены из двух и более остатковаминокислот, соединённых в цепь пептидными (амидными) связями —C(O)NH—. Обычно подразумеваются пептиды, состоящие из α -аминокислот, однако термин не исключает пептидов, полученных из любых других аминокарбоновых кислот.[1]

Пептиды, последовательность которых короче примерно 10-20 аминокислотных остатков могут также называться олигопептидами, при большей длине последовательности они называются полипептидами. Белками обычно называют полипептиды, содержащие примерно от 50 аминокислотных остатков.[2]

В 1900 году немецкий химик-органик Герман Эмиль Фишер выдвинул гипотезу о том, что пептиды состоят из цепочки аминокислот, образованных определёнными связями. И уже в 1902 году он получил неопровержимые доказательства существования пептидной связи, а к 1905 году разработал общий метод, при помощи которого стало возможным синтезировать пептиды в лабораторных условиях.

Постепенно учёные изучали строение различных соединений, разрабатывали методы разделения полимерных молекул на мономеры, синтезировали все больше и больше пептидов.

Полипептиды могут иметь в молекуле неаминокислотные фрагменты, например углеводные остатки.

Природные и синтетические полипептиды с молекулярной массой более 5000[3](6000[4])-10000[5][6] дальтон называют белками.

Белки́ (протеи́ ны, полипепти́ ды [1]) — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаютсяпосттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

 

Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётовшаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для изученияпространственной структурыданного белка

Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле.

Белки — важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

Определение аминокислотной последовательности первого белка — инсулина — методом секвенирования белков принеслоФредерику Сенгеру Нобелевскую премию по химии в 1958 году. Первые трёхмерные структуры белков гемоглобина и миоглобинабыли получены методом дифракции рентгеновских лучей, соответственно, Максом Перуцем и Джоном Кендрю в конце 1950-х годов[2][3], за что в 1962 году они получили Нобелевскую премию по химии.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.