Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Предварительный выбор закона распределения
Большинство применяемых в практике контроля статистических методов основано на предложении, что распределение контролируемого признака подчиняется определенному теоретическому закону (нормальному, биноминальному, пуассоновскому и так далее) с параметрами, либо оцениваемыми по выборке, либо заранее известными. Применению этих методов должна предшествовать проверка по данным выборочных наблюдений гипотезы о законе распределения. Проверка гипотезы о законе распределения значения признака в генеральной совокупности осуществляется с помощью критериев согласия. Чаще всего на практике имеют дело с нормальным распределением. Чем это объясняется? Ответ на этот вопрос дан А.М.Ляпуновым в центральной предельной теореме теории вероятности. Приведем следствие из нее: если случайная величина представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распределение, близкое к нормальному. Функция плотности нормального закона распределения имеет вид , а интегральная функция распределения – . У нормального распределения два параметра (количество параметров ): математическое ожидание и среднее квадратическое отклонение . Их оцениваем по выборке: . Кривая нормального распределения симметрична относительно прямой . 1) Для нормального закона средняя арифметическая , мода и медиана равны как характеристики центра распределения: . У нас: 9, 0548; 9, 115; 9, 097. Как видно, значения этих величин практически не отличаются друг от друга. 2) У кривой нормального распределения коэффициенты асимметрии и эксцесса равны нулю. У нас: –0, 3; –0, 25. Как видно, значение коэффициента асимметрии и значение коэффициента эксцесса отличаются от нуля. (Замечание: считается, что число , если 0, 1). 3) В случае нормального распределения справедливо следующее условие: . Проверим выполнение этого условия для нашего примера.
; . Условия выполняется. 4) На практике для выдвижения гипотезы о нормальном распределении используют правило 3-х сигм: если случайная величина распределена нормально, то абсолютная величина её отклонения от математического ожидания не превосходит утроенного среднеквадратического отклонения, т.е. все значения случайной величины должны попасть в интервал: : Рисунок 5. – Правило 3-х сигм.
В нашем случае все значения величин попадают в интервал , равный , то есть в интервал (6, 3848; 11, 7248), так как 6, 75, 10, 97. Таким образом, у нас есть основания предположить, что изучаемая случайная величина распределена по нормальному закону (нулевая гипотеза): , где – опытные частоты, – теоретические частоты, – длина интервала, – объём выборки, – среднее квадратическое отклонение, – табулированная функция, .
|