Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Нейросетевые технологии




 

В то время как экспертные системы пробуют ввести опыт людей в компьютерную программу, нейронные сети пытаются создать значимые модели из большого количества данных. Нейронные сети могут распознавать модели, слишком не ясные для людей, и адаптировать их при получении новой информации.

Ключевая характеристика нейронных сетей в том, что они обучаются. Программе нейронных сетей сначала дается набор данных, состоящих из многих переменных, связанных с большим количеством случаев, или исходов, в которых результаты известны. Программа анализирует данные и обрабатывает все корреляции, а затем выбирает набор переменных, которые строго соотнесены с частными известными результатами, как начальная модель. Эта начальная модель используется, чтобы попробовать предсказать результаты различных случаев, а предсказанные результаты сравниваются с известными результатами. Базируясь на этом сравнении, программа изменяет модель, регулируя параметры переменных или даже заменяя их. Этот процесс программа нейронных сетей повторяет много раз, стремясь улучшить прогнозирующую способность при наладке модели. Kогда в это в этом итерационном подходе дальнейшее усовершенствование исчерпывается, программа готова делать предсказания для будущих случаев.

Как только станет доступным новое большое количество случаев, эти данные также вводятся в нейронную сеть и модель еще раз корректируется. Нейронная сеть обучается в основном относительно причинно-следственных моделей из этих дополнительных данных, и прогнозирующая способность сети улучшается.

Коммерческие программы нейронных сетей доступны за приемлемую цену, но наиболее трудная часть создания и применения нейронных сетей – частый сбор данных и трудности обеспечения данных. Однако возрастает число развертывающихся приложений. Bank of America использует нейронную сеть, чтобы оценить коммерческие заявки на получение ссуды. «American Express» использует нейронную систему, чтобы читать почерк на кредитной карте; штат Вайоминг – чтобы читать заполненные от руки налоговые формы. «Oil giant Агсо» и «Техасо» используют нейронные сети, чтобы помочь обнаружить места газовых и нефтяных месторождений под поверхностью земли. «Mellon Bank» работает над нейронной системой, которая ускорит распознавание мошеннических подделок кредитных карточек, контролируя такие показатели, как частота использования кредитной карточки и размеры расходов относительно предельного размера кредита.

 

 


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал