Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Спектры сигналов






    Важной характеристикой каждого сигнала является его спектр, определяющий распределение амплитуды сигнала по частотам. Математически спектр сигнала описывается спектральной плотностью, которая представляет собой преобразование Фурье от временной функции сигнала:

    .

    Таким образом, если известно выражение сигнала как функции времени, то можно определить его спектр. Наиболее простым является спектр гармонического колебания u (t) = U 0 cosw0 t, представляющий собой одну составляющую на частоте w0 (рис.1.17, а). Для определения частотных составляющих спектра амплитудно-модулированного сигнала u АМ(t) = U 0 (1+ m cosΩ t) cosw0 t достаточно произвести простые преобразования.

    u АМ(t) = U 0 (1+ m cosΩ t) cosw0 t = U 0 cosw0 t + U 0 m cosΩ t cosw0 t.

    Так как , то можно записать

    .

    Как можно видеть, данный сигнал образован тремя слагаемыми с разными частотами: колебаниями на несущей частоте w0 и двумя боковыми составляющими с частотами w0+Ω и w0–Ω. Таким образом, спектр этого сигнала состоит из трех составляющих – центральной (несущей) с амплитудой U 0, и двух боковых с амплитудами mU 0/2 (рис.1.17, б).

     

    U
    w0–W
    Δ wсп =2W
    U0
    mU0 /2
    mU0 /2
    w0+W
    w0
    w
    U
    U0
    w0
    w
    а)
    б)

    Рис. 1.17. Спектры колебаний: а) простого гармонического; б) амплитудно-модулированного при модуляции одним тоном

     

    Разность частот крайних составляющих спектра называется шириной спектра Δ wсп. Ширина рассматриваемого спектра равна удвоенному значению частоты модуляции (Δ wсп =2Ω).

    Управляющий (модулирующий) сигнал может иметь более сложный вид, чем рассмотренный выше. Человеческая речь, например, представляет собой случайный сигнал, заключенный в определенной полосе частот [Ω min Ω max]. Спектр высокочастотного амплитудно-модулированного сигнала в данном случае будет включать несущую и боковые составляющие с шириной
    DW = Ω max – Ω min каждая и случайной амплитудой (рис.1.18). Ширина спектра такого сигнала равна 2Ω max.

     

    U
    w0–Wmin
    Δ wсп =2W max
    U0
    w0
    w
    w0–Wmах
    w0+Wmax
    w0+Wmin

    Рис. 1.18. Спектр амплитудно-модулированного колебания
    при модуляции голосом

    Спектр частотно-модулированного и фазомодулированного сигналов теоретически бесконечно широк. При модуляции по синусоидальному закону с частотой W спектр включает несущую частоту w0 и бесконечно большое число боковых составляющих, частоты которых равны w0± n W, а n принимает все целые значения от единицы до бесконечности. Однако при увеличении n амплитуды составляющих спектра быстро уменьшаются. Если считать, что ширина спектра ЧМ или ФМ сигнала ограничивается диапазоном частот, в пределах которого амплитуды составляющих спектра уменьшаются до 0, 01 от амплитуды несущей, то ширину спектра (рис.1.19) можно принять равной удвоенному значению девиации частоты:

     

    Δ wсп =2Δ wм.

    U
    Δ wсп
    U0
    w0
    w
    w0n W
    w0+ n W
    W

    Рис. 1.19. Спектр фазо- или частотно-модулированного радиосигнала
    при модуляции одним тоном






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.