![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Дифракция как отражение
Пусть некоторый узел обратной решетки [[ HKL ]] попадает на сферу Эвальда. Соответствующая ему плоскость в кристалле с индексами (hkl) располагается нормально H (рис.2.11).
Рис. 2.11. Дифракция как отражение.
Проведем в обратной решетке через центр сферы плоскость, параллельную (hkl). Поскольку вектор H всегда перпендикулярен плоскости (hkl), то угол при вершине OAM, будет разделен надвое. Из этого следует, что углы между падающим лучем S0 и плоскостью (hkl), а также между отраженным лучем и (hkl) всегда равны между собой. На основании этого (hkl) можно рассматривать как плоскость, отражающую рентгеновские лучи, и процесс дифракции можно описывать как отражение рентгеновских лучей от семейства соответствующих плоскостей кристалла. Действительно, в кристалле всегда можно найти плоскость, которая ориентирована к лучу дифракции как плоскость отражения. Это относится и ко всей системе плоскостей, параллельных данной. Поэтому каждый дифракционный луч может рассматриваться как “отраженный” от системы параллельных атомных сеток – плоскостей. Сфера Эвальда в этом случае позволяет выделить в кристалле отражающие плоскости, которые сопоставляются узлам, лежащим на поверхности сферы.
2.7. Соотношение Вульфа–Брегга Для определения углов, при которых возможны отражения рентгеновских лучей, рассмотрим систему кристаллографических плоскостей с расстоянием между ними равным d, т.е. представим кристалл как систему атомных плоскостей (рис.2.12).
Рис. 2.12. К выводу уравнения Вульфа–Брегга.
Пусть падающий луч идет по направлению S0 и составляет угол q с плоскостью (hkl), а отраженный дифракционный луч идет по направлению S также под углом q к плоскости (hkl). Рассмотрим интерференцию отраженных волн от семейства параллельных плоскостей 1, 2, 3... с индексами (hkl). Рентгеновские лучи, проникая вглубь кристалла, будут отражаться не только от внешней 1-ой но и от внутренних 2, 3 и т.д. плоскостей. Отраженные от различных плоскостей лучи будут интерферировать между собой и усиливать друг друга, если разность хода лучей равна целому числу волн nl. Эту разность хода легко вычислить из рисунка 2.12. Она равна AB + BC = 2AB = 2d sinq. Посколькув направлении мы должны наблюдать луч дифракции, соответствующий максимуму интерференции, то Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение 2d sinq = nl, (2.32) где d – межплоскостное расстояние, n=1, 2, 3.... Это и есть формула Вульфа–Брегга. Угол q, входящий в нее, обычно называют углом скольжения или углом отражения; целое число n – порядком отражения. Формула Вульфа–Брегга указывает на селективность (избирательность) появления отраженных рентгеновских лучей. В этом заключается отличие между отражением рентгеновских лучей от атомных плоскостей кристалла и отражением света от зеркала. Если для оптических лучей непрерывно менять угол между зеркалом и падающим лучом, то отраженный луч будет очень мало менять свою интенсивность. Для рентгеновских же лучей кривая интенсивности является кривой с резко выраженными максимумами. При этом условие дифракции выполняется только в том случае, когда nl/2d = sinq £ 1 и nl£ 2d. (2.33) Индексы интерференций. В формуле Вульфа–Брегга число n, называемое порядком отражения, показывает, какое число длин волн составляет разность хода падающих и отраженных лучей. Преобразуем уравнение Вульфа–Брегга (2.32) и, разделив обе части его на n, получим 2(dhkl / n) sinq = l. (2.34) В этой формуле множитель dhkl / n можно рассматривать, как межплоскостное расстояние новой системы (HKL) плоскостей. Эти плоскости реально могут и не существовать, но они должны удовлетворять условию: dhkl / n=dHKL, (2.35) где H, K, L – индексы фиктивной плоскости. Индексы плоскости, как известно, обратно пропорциональны отрезкам, отсекаемым на осях координат и, следовательно, обратно пропорциональны межплоскостному расстоянию. Используя коэффициент пропорциональности p, запишем h=1/pa=1/pdhkl H= 1/pdHKL=n/dhkl или H= nh.
Индексы H, K, L новой системы плоскостей называются индексами интерференции. Для системы (HKL) уравнение Вульфа–Брегга запишем как: 2dHKL× sinq=l. (2.37) В последнем виде формула очень часто используется при индицировании рентгенограмм. Индексы интерференции используются при обозначении рефлексов на рентгенограммах. Сервис онлайн-записи на собственном Telegram-боте
Попробуйте сервис онлайн-записи VisitTime на основе вашего собственного Telegram-бота:— Разгрузит мастера, специалиста или компанию; — Позволит гибко управлять расписанием и загрузкой; — Разошлет оповещения о новых услугах или акциях; — Позволит принять оплату на карту/кошелек/счет; — Позволит записываться на групповые и персональные посещения; — Поможет получить от клиента отзывы о визите к вам; — Включает в себя сервис чаевых. Для новых пользователей первый месяц бесплатно. Зарегистрироваться в сервисе Пользуясь соотношением (2.37), всегда следует помнить, что межплоскостное расстояние в этой формуле может отвечать некоторой фиктивной плоскости (HKL), индексы которой (индексы интерференции) всегда имеют общий множитель n. Реально же отражение происходит от плоскостей с индексами в n раз меньше и при разности хода в n раз больше. Например, пусть разность хода между плоскостями (001) с межплоскостным расстоянием d001 равна 4l. Тогда 2d001× sinq=4l или (2d001/4)sinq=l. Заменяя индексы реальных плоскостей (001) индексами интерференции, получим d/4=d¢ и 2d004× sinq=l, где d¢ =d004. Таким образом, отражение от плоскости (001) с разностью хода, равной 4l, можно рассматривать условно как отражение от плоскости с индексами (004) и разностью хода l. Индексы содержат общий множитель, равный 4.
|