Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Теорема Остроградського-Гауса та її застосування
Напруженість електростатичного поля зручно представити через густину силових ліній, що пронизують елементарну ділянку поверхні, розміщену перпендикулярно до цих ліній (рис.2.6). Рис. 6. З останнього рівняння випливає:
(2.18)
Величину вектора dФ Еназивають потоком вектора напруженості через елементарну площадку dS. З рівняння (2.8) випливає, що потік вектора напруженості Ф Е через поверхню S дорівнює:
Ф Е = (2. 19) Згідно з теоремою Остроградського-Гауса, потік вектора напруженості електростатичного поля через довільну замкнену поверхню S дорівнює алгебраїчній сумі зарядів, які обмежені цією поверхнею (Рис.2.7), поділеній на електричну постійну e0: (2.20) Теорема Остроградського – Гауса використовується для розрахунку електростатичних полів, створених зарядженими тілами найрізноманітніших конфігурацій. (2.20) Розглянемо для прикладу, розрахунок електростатичного поля, створеного нескінченно довгим, рівномірно зарядженим циліндром з радіусом R і з лінійною густиною електричних зарядів (рис.2.8). В ролі замкненої поверхні, що оточує цей циліндр, візьмемо коаксіальний циліндр радіусом r і висотою h. Повний потік вектора напруженості буде дорівнювати потоку тільки через бічну поверхню замкнутого циліндра, оскільки силові лінії електричного поля не перетинають площі основ цього циліндра (рис. 2.8). . (2.21) Враховуючи, що в нашому випадку En = E а отримаємо , або . Звідси . (2.22)
Різниця потенціалів між двома точками, які знаходяться в одній площині на відстанях r1 i r2 від осі зарядженого циліндра, з (2.11): . (2.23).
|