Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Графический метод решения. ⇐ ПредыдущаяСтр 2 из 2
Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола — 20 единиц (футов красного дерева). Стул требует 10 человеко- часов, стол — 15. Имеется 400 единиц материала и 450 человеко-часов. Прибыль при производстве стула — 45 дол. США, при производстве стола — 80 дол. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль? Обозначим Х1 число изготовленных стульев, Х2 — число столов. Задача оптимизации имеет вид:
45Х1 + 80Х2 → max; 5Х1 + 20Х2 < 400; 10Х1 + 15Х2 < 450; Х1 > 0; Х2 > 0.
В первой строке выписана целевая функция — прибыль при выпуске Х1 стульев и Х2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х1 и Х2. При этом должны быть выполнены ограничения по материалу (вторая строчка) — истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) — затрачено не более 450 ч. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х1 положительно. Но невозможно представить себе отрицательный выпуск — Х1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны. Условия производственной задачи можно изобразить на координатной плоскости. Будем по оси абсцисс откладывать значения Х1, а по оси ординат — значения Х2. Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения (Х1, Х2) объемов выпуска в виде треугольника (рис. 1). Рис. 1. Ограничения по материалу Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, в данном случае — треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (80, 0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0, 20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, что означает — материал останется. Аналогичным образом можно изобразить и ограничения по труду (рис. 2). Рис. 2. Ограничения по труду
Ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника, который получается аналогично — путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х1, соответствующую стульям, в точке (45, 0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х2, соответствующую столам, в точке (0, 30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, что означает — часть рабочих будет простаивать. Мы видим, что очевидного решения нет — для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то и другое. Но в каком соотношении? Чтобы ответить на этот вопрос, надо «совместить» рис. 1 и рис. 2, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве (рис. 3).
Таким образом, множество возможных значений объемов выпуска стульев и столов (Х1, Х2), или, в других терминах, множество А, задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т.е. выпуклый четырехугольник, показанный на рис. 3. Три его вершины очевидны — это (0, 0), (45, 0) и (0, 20). Четвертая — это пересечение двух прямых — границ треугольников на рис. 1 и рис. 2, т.е. решение системы уравнений 5Х1 + 20Х2 = 400; 10Х1 + 15Х2 = 450. Из первого уравнения: 5Х1 = 400 - 20 Х2, Х1 = 80 - 4Х2. Подставляем значение X1, выраженное через X2, во второе уравнение: 10(80 - 4Х2) + 15Х2 = 800 - 40Х2 + 15Х2 = 800 - 25Х2 = 450, следовательно, 25Х2 = 350, Х2 = 14, откуда Х1 = 80 - 4 х 14 = 80 - 56 = 24. Итак, четвертая вершина четырехугольника — это (24, 14). Надо найти максимум линейной функции на выпуклом многоугольнике. (В общем случае линейного программирования — максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве.) Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае — в одной вершине, и это — единственная точка максимума. В частном — в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума. Целевая функция 45Х1 + 80Х2 принимает минимальное значение, равное 0, в вершине (0, 0). При увеличении аргументов эта функция увеличивается. В вершине (24, 14) она принимает значение 2200. При этом прямая 45Х1 + 80Х2 = 2200 проходит между прямыми ограничений 5Х1 + 20Х2 = 400 и 10Х1 + 15Х2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24, 14). Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 дол.
|