Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Математическая модель задачиСтр 1 из 2Следующая ⇒
Лекция 3. Линейное программирование План лекции: 1. Основные понятия и определения. 2. Математическая модель задачи. 3. Графический метод решения. Основные понятия и определения Математические исследования отдельных экономических проблем, математическая формализация числового материала проводилась ещё в XIX веке. При математическом анализе процесса расширенного производства использовались алгебраические соотношения, анализ их проводился с помощью дифференциального исчисления. Это давало возможность получить общее представление о проблеме. Развитие экономики потребовало количественных показателей, и в 1920 годы был создан межотраслевой баланс (МОБ). Он-то и послужил толчком в деле создания и исследования математических моделей. Разработка МОБ в 1924-1925 годах в СССР повлияла на работы экономиста и статистика Василия Васильевича Леонтьева. Он разработал межотраслевую модель производства и распределения продукции. В 1938 году Леонид Витальевич Канторович в порядке научной консультации приступил к изучению чисто практической задачи по составлению наилучшего плана загрузки лущильных станков (фанерный трест). Эта задача не поддавалась обычным методам. Стало ясно, что задача не случайная. В 1939 году Леонид Витальевич Канторович опубликовал работу «Математические методы организации и планирования производства», в которой сформулировал новый класс экстремальных задач с ограничениями и разработал эффективный метод их решения, таким образом были заложены основы линейного программирования. Изучение подобных задач привело к созданию новой научной дисциплины линейного программирования и открыло новый этап в развитии экономико-математических методов. В 1949 году американский математик Джордж Бернард Данциг разработал эффективный метод решения задач линейного программирования (ЗЛП) - симплекс-метод. Термин «программирование» нужно понимать в смысле «планирования» (один из переводов англ. programming). Он был предложен в середине 1940-х годов Джорджем Данцигом, одним из основателей линейного программирования, ещё до того, как компьютеры были использованы для решения линейных задач оптимизации. Линейное программирование – раздел математического программирования, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных ограничениях, налагаемых на переменные. По типу решаемых задач его методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений. Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений. Математическая модель задачи Формы записи задачи линейного программирования: Общей задачей линейного программирования называют задачу (1) при ограничениях (2) (3) (4) (5) - произвольные (6) где - заданные действительные числа; (1) – целевая функция; (1) – (6) –ограничения; - план задачи.
Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков: F(X) → max; X ϵ A, где Х — параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу — число, вектор, множество и т.п. Цель менеджера — максимизировать целевую функцию F(X), выбрав соответствующий Х. При этом он должен учитывать ограничения X ϵ A на возможные значения управляющего параметра Х — он должен лежать в множестве А. Рассмотрим примеры оптимизационных задач менеджмента. Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая функция F(X) линейная, а ограничения А задаются линейными неравенствами.
|