Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






XIX. Кино 37 страница






Наряду с активными воздействиями, заметные изменения в метеорологич. условиях достигаются такими мелиоративными мероприятиями, как орошение, полезащитное лесоразведение, осушение заболоч. районов. Эти изменения, однако, в основном ограничиваются нижним (приземным) слоем воздуха.

Кроме направленных воздействий на погоду и климат, ряд аспектов деятельности человека оказывает определённое влияние на климатич. условия. Так, в частности, в последние годы значительно усилилось загрязнение А. пылью и различными газами, выбрасываемыми пром. предприятиями. В связи с этим во многих странах проводят работы по контролю за загрязнением воздуха и по ограничению выбросов в А. загрязняющих веществ. Быстрый рост энергетики приводит к дополнит. нагреванию А., к-рое пока заметно только в крупных пром. центрах, но в сравнительно близком будущем может привести к изменениям климата на больших территориях. Можно думать, что в ближайшее время значительно усилится контроль человека над атм. процессами для изменения их в благоприятном направлении и предотвращения последствий, вредных для хоз. деятельности.

О п т и ч е с к и е, а к у с т и ч ес к и е и э л е к т р и ч е с к и е я вл е н и я в А. Распространение электромагнитного излучения в А. связано с возникновением различных явлений, обусловленных поглощением и рассеянием света и рефракцией (искривлением траектории светового луча). Хорошо известны явления радуги и венцов, возникающие в результате рассеяния солнечного света на каплях воды. Гало и венцы наблюдаются при рассеянии солнечной радиации кристаллами льда. Рассеянием света обусловлены видимая сплюснутость небесного свода и голубой цвет неба. Явление рефракции света приводит к образованию миражей. Оптич. нестабильность А.- важный фактор, ограничивающий возможность астрономических наблюдений. Условия распространения света в А. определяют видимость предметов. Прозрачность А. на различных длинах волн определяет дальность распространения излучения лазеров, что важно с точки зрения применения лазеров для связи. Ослабление А. инфракрасного излучения влияет на функционирование различных устройств и приборов инфракрасной техники. Для исследований оптич. неоднородностей стратосферы и мезосферы важное значение имеет явление сумерек. Напр., фотографирование сумерек с космич. кораблей позволяет обнаруживать аэрозольные слои. Все эти вопросы, а также мн. другие изучает атмосферная оптика. Рефракция и рассеяние радиоволн обусловливают возможности радиоприёма (см. Распространение радиоволн).

Изучаемое в атмосферной акустике распространение звука в А., зависящее от пространственного распределения темп-ры и скорости ветра, представляет интерес для разработки косв. методов зондирования верхних слоев А. Так, напр., наблюдения зон слышимости звука при искусств. взрыве позволили впервые обнаружить увеличение темп-ры с высотой в стратосфере. Применение ракетного акустического метода дало возможность получить богатую информацию о ветрах в стратосфере и мезо-сфере.

Фундаментальная проблема в исследованиях атмосферного электричества --наличие отрицат. заряда Земли и обусловленного им электрич. поля А. Важная роль в этой проблеме принадлежит образованию облаков и грозового электричества. Возникновение грозовых разрядов влечёт за собой появление молний. Частое возникновение грозовых разрядов вызвало необходимость разработки методов грозозащиты зданий, сооружений, линий электропередач и связи. Особую опасность это явление представляет для авиации. Грозовые разряды вызывают атм. радиопомехи, получившие назв. атмосфериков. В периоды резкого увеличения напряжённости электрич. поля наблюдаются светящиеся разряды, возникающие на остриях и острых углах предметов, выступающих над земной поверхностью, на отдельных вершинах в горах и т. п. (Эльма огни). Под влиянием процессов ионизации различного происхождения А. всегда ионизована и содержит сильно изменяющиеся в зависимости от конкретных условий количества лёгких и тяжёлых ионов, к-рые обусловливают электрич. проводимость А. Гл. ионизаторами земной поверхности являются излучения радиоактивных веществ, содержащихся в земной коре, в А., а также космич. лучи. В верхних слоях А. ионизация обусловлена ультрафиолетовой, корпускулярной и рентгеновской солнечной радиацией. Именно эти факторы в осн. определяют структуру ионосферы, режим к-рой зависит от условий солнечной активности.

Изучение А. Хотя изучение А. началось ещё в античное время, наука об А.- метеорология - сложилась только в 19 в. В состав метеорологии входит ряд дисциплин, к-рые различаются по применяемым в них методам исследований и по изучаемым объектам. Сюда относятся: физика атмосферы, химия атмосферы, климатология, синоптич. метеорология, динамич. метеорология и др. Влияние атм. факторов на биол. процессы изучается биометеорологией, включающей с.-х. метеорологию и биометеорологию человека. Классификация этих дисциплин окончательно не установилась и находит-•ся в стадии развития.

Для наблюдения за А. на земной поверхности создана обширная сеть метеороло-гич. станций и постов, оборудованных стандартными метеорологическими приборами и аэрологическими приборами, в труднодоступных районах устанавливаются автоматич. метеорологич. станции. Важное значение в системе наземных метеорологических наблюдений приобрела радиолокация, позволяющая обнаруживать и исследовать облака и осадки, турбулентные и конвективные образования в А., измерять скорость и направление ветра на высотах (см. Радиолокация в метеорологии). Широко применяется также пеленгация грозовых очагов путём регистрации атмосфериков. Важная роль в метеорологич. наблюдениях принадлежит вертикальным зондированиям А. при помощи радиозондов для измерений атм. давления, скорости и направления ветра, темп-ры, влажности воздуха в свободной А.

Для изучения различных характеристик А. применяются самолёты и автоматич. аэростаты, напр. при исследовании облаков и разработке методов активных воздействий на них, а также для измерений в области актинометрии, атм. оптики и атм. электричества. В период Международного геофизического года (1957-58) и в последующие годы началось использование ракет метеорологических для измерений темп-ры и атм. давления в верхней стратосфере и мезосфере. Важнейшим средством получения метеорологич. информации, особенно существенным для акватории океанов и территорий труднодоступных районов, стали спутники метеорологические.

Лит.: Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967; X р г и а н А. X., Физика атмосферы, 2 изд., М., 1958; Зверев А.С., Синоптическая метеорология и основы предвычисления погоды. Л., 1968; Хромов С.П., Метеорология и климатология для географических факультетов, Л., 1964; Тверской П.Н., Курс метеорологии, Л., 1962; Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965; Б у д ы к о М. И., Тепловой баланс земной поверхности, Л., 1956; Кондратьев К.Я., Актинометрия, Л., 1965; Хвостиков И.А., Высокие слои атмосферы, Л., 1964; Мороз В.И., Физика планет, М., 1967; Тверской П.Н., Атмосферное электричество, Л., 1949; Ш и щ к и н Н. С., Облака, осадки и грозовое электричество, М., 1964; Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966; Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л,, 1965. М- И. Будыко, К. Я. Кондратьев.

АТМОСФЕРА, единица давления, широко применявшаяся в различных областях физики, химии и техники. Нормальная, или физическая, А. (обозначается атм, atm) - давление, уравновешиваемое столбом ртути высотой 760 мм при 0°С, плотности ртути 13595, 1 кг/м3 и нормальном ускорении свободного падения 9, 80665 м/сек2. 1 атм соответствует давлению т. н. стандартной атмосферы Земли на уровне океана (см. Атмосфера стандартная). Технич. А. (обозначается am, at) - давление, к-рое испытывает плоская горизонталь-пая поверхность площадью в 1 см2 под действием равномерно распределённой нагрузки в 1 кгс. В Международной системе единиц единицей давления служит н/м2 (ньютон на м2). 1 атм = 1, 0332 am = 101325 н/м2 (точно), 1 аm=0, 967841 аmм=980665 н/м2 (точно).

АТМОСФЕРА КАБИНЫ космического корабля, искусств. газовая среда в замкнутом объёме герметич. кабины космич. летат. аппарата. Для человека оптимальна А. к., полностью соответствующая по физ. свойствам и хим. составу земной атмосфере. А. к. может быть одногазовой - из газообразного кислорода при избыточном давлении от 33 до 56 кн/м2 (1 кн/м2~7, 5 мм рт. ст.), или многогазовой - из неск. газов (О2, N2CO2 и др.). Преимущество одногазовой А. к.- нек-рое уменьшение возможности деком-прессионных расстройств и снижение эффекта разгерметизации кабины при выходе космонавтов в космич. пространство или на поверхность др. небесного тела. Но при применении одногазовой А. к. должно быть повышено давление кислорода по сравнению с его парциальным давлением в земной атмосфере, что сопряжено с повышенной пожарной опасностью. Кроме того, при одногазовой А. к. усложняется система терморегуляции. При длительном (более 2-3 нед) воздействии на человека одногазовой А. к. отмечаются нек-рые нарушения физиологич. функций человека, снижающие устойчивость организма к действию факторов космич. полёта, поэтому в длит. полёте использование одногазовой А. к. недопустимо.

Ряд важнейших преимуществ имеет многогазовая А. к. при нормальном ба-рометрич. давлении. Однако при длит. космич. полётах в такой А. к. могут возникнуть нек-рые отклонения от нормальной земной атмосферы. Допустимы колебания общего барометрич. давления в кабине в пределах 40-120 кн/м2. Парциальное давление кислорода должно составлять 20-40 кн/м2; падение его ниже 20 кн/м2 может привести к появлению признаков кислородного голодания, снижению сопротивляемости организма, неблагоприятному воздействию факторов космич. полёта и понижению работоспособности членов экипажа. Певышение давления св. 40 кн/м2 может вызвать изменения со стороны органов дыхания и также снизить сопротивляемость организма. Парциальное давление углекислого газа не должно быть больше 1 кн/м, чему соответствует объёмная концентрация в 1% (при нормальном барометрич. давлении); повышение концентрации может вызвать отрицат. реакции организма. Фязиологич. значение азота для живого организма ещё недостаточно выяснено. Исключение азота из А. к. вызывает снижение общего барометрич. давления с соответствующими вредными последствиями для организма.

Схема строения атмосферы: 1- уровень моря; 2- высшая точка Земли - г. Джомолунгма (Эверест), 8848 м; 3 - кучевые облака хорошей погоды; 4 - мощно-кучевые облака; 5 - ливневые (грозовые) облака; 6 - слоисто-дождевые облака; 7 - перистые облака; 8 - самолёт; 9 - слой максимальной концентрации озона; 10 - перламутровые облака; //-стратостат; 12 - радиозонд; 13 - метеоры; 14 - серебристые облака; 15 - полярные сияния; 16 -американский самолёт-ракета Х-15; 17, 18, 19-радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 - звуковая вол; на, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 - первый советский искусственный спутник Земли; 22-межконтинентальная баллистическая ракета; _23 - геофизические исследовательские ракеты; 24 - метеорологические спутники; 25 - космические корабли " Союз-4" и " Союэ-5"; 26 - космические ракеты, уходящие за пределы атмосферы, а также радио-волна, пронизывающая ионизованные слон и уходящая из атмосферы; 27, 28 - диссипация (ускальзывание) атомов Н и Не; 29 -траектория солнечных протонов Р; 30 - проникновение ультрафиолетовых лучей (длина волны X > 2000 А и'Х < 900 А).

Перспективна замена азота др. инертным газом, напр. гелием, в 7 раз более лёгким и более теплопроводным, что позволяет повысить темп-ру в кабине и снизить мощность системы терморегулирования. Однако гелий более текуч, чем азот (усложняется борьба с утеч-'ками из кабины). Возможность кратковременного (до 10 сут) пребывания человека в гелиевой, вернее гелиево-кислород-ной, среде доказана экспериментально. В А. к. должна поддерживаться относит. влажность в пределах 30-70%, при t=20±1°С, скорость перемещения газовых потоков - не более 0, 2-0, 3 м/сек, скорость изменения давления в процессах регулирования и др.- не более 300 н/(м2сек) (2ммрт. ст. в 1 сек). Все физ. свойства А. к. и её хим. состав поддерживаются системой жизнеобеспечения.

АТМОСФЕРА ОДНОРОДНАЯ, условная атмосфера, в к-рой с высотой плотность воздуха не меняется, а давление линейно убывает. Высота А. о. Земли при темп-ре у её поверхности 0°С должна быть = 8000 м. Темп-pa А. о. уменьшается при подъёме на каждые 100 м на 3, 42°С. Понятие А. о. используют в тео-ретич. метеорологии.

АТМОСФЕРА СТАНДАРТНАЯ международная (МСА), условная атмосфера, в которой распределение давления с высотой в земной атмосфере получается из барометрической формулы при определённых предположениях о распределении темп-ры по вертикали; служит для градуировки альтиметров (высотомеров).

[ris]

Распределение давления р, температуры t и плотности р в Международной стандартной атмосфере; р0 и р0 - давление и плотность на уровне моря.

Для А. с. принимают след, условия: давление на среднем уровне моря при t = 15°C равно 1013 мб (101, 3 кн/м2 или 760 мм рт. ст.); темп-pa уменьшается по вертикали с увеличением высоты (вертикальный градиент) на 6, 5°С на 1 км до уровня 11 км (условная высота начала стратосферы), где темп-ра становится равной -56, 5°С и почти перестаёт меняться (см. рис.).

АТМОСФЕРИКИ, электрич. сигналы, создаваемые радиоволнами, излучаемыми разрядами молний. Вблизи земной поверхности происходит ок. 100 разрядов молний в 1 сек. Поэтому в любой точке земного шара можно практически непрерывно регистрировать А.
[ris]

Спектр радиоволн, излучаемых разрядом молнии; сплошная линия - спектр основного разряда, точечный пунктир- спектр предразряда, штриховой пунктир - суммарный спектр; f - частота радиоволн, Е-напряжённость электрического поля волны.

При радиоприёме на слух А. воспринимаются как шорохи или характерные свисты, создаюшие атмосферные помехи радиоприёму. Разряд молнии имеет 2 стадии: предразряд и основной разряд, различающиеся силой тока и спектром излучаемых радиоволн (см. рис.). Осн. разряд излучает сверхдлинные волны, а предразряд - длинные волны, средние волны и даже короткие волны. Максимум энергии А. лежит в области частот порядка 4-8 кгм,. Если А. создаются местными грозами, то их спектр определяется только спектром излучения грозового разряда. Если же источник-удалённая гроза, то спектр определяется также и условиями распространения радиоволн от очага грозы до радиоприёмного устройства.

Нек-рые А. воспринимаются на слух как сигналы, частота к-рых непрерывно уменьшается. Такие А. наз. свистящими. Их особенность связана с механизмом распространения сверхдлинных волн. При распространении таких волн в волноводе, образованном нижней границей ионосферы и. поверхностью Земли, происходит частичное " просачивание" их через ионосферу. Просочившиеся волны, распространяясь вдоль силовых линий магнитного поля Земли, удаляются от поверхности Земли на десятки тыс. км и затем снова возвращаются к Земле. Скорость их распространения зависит от частоты, высокочастотные составляющие сигнала распространяются с большей скоростью и приходят раньше. Это и приводит к возникновению на выходе приёмного устройства характерного свиста, высота тона к-рого непрерывно меняется. Исследования А. дают сведения о механизме распространения сверхдлинных волн, а также о свойствах самых нижних и очень высоких областей ионосферы, в к-оых распространяются А. Для расчётов линий радиосвязи построены спец. карты и номограммы, по которым можно определить уровень А. в каждой точке Земли.

Лит.: Альперт Я. Л., Распространение радиоволн и ионосфера, М., 1960; Д о -луханов М. П., Распространение радиоволн, 2 изд., М., 1960; Краснушкин П. Е., Атмосферики, в кн.: Физический энциклопедический словарь, т. 1, М., I960, с 100 - 102. М. Б. Виноградова.

АТМОСФЕРНАЯ АКУСТИКА, раздел акустики, в к-ром изучаются распространение и генерация звука в реальной атмосфере и исследуется атмосфера акустич. методами. А. а. как метод исследования является также разделом физики атмосферы. Изучение распространения звука в атмосфере началось с зарождения акустики. В конце 17 -18 вв. У. Дарем (Англия) изучал зависимость скорости звука от скорости ветра, Бьян-кони (Италия) и Ш. М. Кондамин (Франция) изучали влияние темп-ры на скорость звука. Большой вклад в исследования распространения звука в неоднородной движущейся среде внесли советские учёные Н. Н. Андреев и И. Г. Русаков (1934), Д. И. Блохинцев (1947).

Распространение звука в свободной атмосфере имеет ряд особенностей. Звуковые волны благодаря теплопроводности и вязкости воздуха поглощаются тем сильнее, чем выше частота звука и чем меньше плотность атмосферы. Поэтому резкие вблизи звуки выстрелов или взрывов на больших расстояниях становятся глухими. Неслышимые же звуки очень низких частот (т. н. ицфраэвуковых) с периодами от неск. сек до неск. мии затухают мало и могут распространяться на тысячи км и даже огибать неск. раз земной шар. Это даёт возможность, напр., обнаруживать ядерные взрывы, являющиеся мощным источником таких воли.

Важные задачи А. а. связаны с явлениями, возникающими при распространении звука в атмосфере, к-рая представляет собой с точки зрения акустики движущуюся неоднородную среду. Темп-pa и плотность атмосферы уменьшаются с увеличением высоты; на больших высотах темп-pa снова возрастает. На эти регулярные неоднородности накладываются зависящие от метеорологич. условий изменения значений темп-ры и ветра, а также их случайные турбулентные пульсации различных масштабов. Т. к. скорость ветра определяется темп-рой воздуха и звук " сносится" ветром, то все перечисленные неоднородности сильно влияют на распространение звука. Возникает искривление звукового луча - рефракция звука, в результате чего наклонный звуковой луч может вернуться к земной поверхности, образуя акустич. зоны слышимости и зоны молчания; происходит рассеяние и ослабление звука на турбулентных неоднородностях, сильное поглощение звука на больших высотах и т. д.

Сложную обратную задачу приходится решать при акустич. зондировании атмосферы. Распределение температуры и ветра на больших высотах определяют по измерениям времени и направления прихода звуковых воли от наземных взрывов или взрывов бомб, сбрасываемых с ракеты. При исследовании турбулентности определяют темп-ру и скорость ветра, измеряя время распространения звука на небольших расстояниях; для получения необходимой точности пользуются ультразвуковыми частотами.

Большое значение получила проблема распространения промышл. шумов, в особенности ударных волн, возникающих при движении сверхзвуковых реактивных самолётов. Если атм. условия благоприятствуют фокусировке этих волн, то у земной поверхности давления могут достичь значений, опасных для сооружений и здоровья людей.

В атмосфере наблюдаются различные звуки естеств. происхождения. Длительные раскаты грома происходят вследствие большой длины грозового разряда, а также потому, что из-за рефракции звуковая волна распространяется по различным путям и приходит с различными запаздываниями. Нек-рые геофизич. явления - полярные сияния, магнитные бури, мощные землетрясения, ураганы, морские волнения - являются источниками звуковых и особенно инфразвуковых волн. Их исследование важно не только для геофизики, но, напр., для заблаговременного штормового оповещения. Разнообразные слышимые шумы вызываются или срывом вихрей с различных препятствий (свист ветра) или колебаниями к.-л. предметов в потоке воздуха (гудение проводов, шелест листьев и т. п.).

Лит.: Красильников В.А., Звуковые и ультразвуковые волны в воздухе, воде и твердых телах, 3 изд., М., 1960; Блохинцев Д. И., Акустика однородной движущейся среды, М.- Л., 1946.

В. М. Бовшеверов. АТМОСФЕРНАЯ ОПТИКА, раздел физики атмосферы, в к-ром изучаются оптич. явления, возникающие при прохождении света в атмосфере. Сюда относятся не только такие красочные явления, как зори, радуги, изменения цвета неба, а и менее заметные, но очень важные для практики явления, как рассеяние и излучение атмосферой видимой и невидимой радиации, поляризация небесного света, видимость предметов и т. д. А. о. составляет часть физич. оптики; она тесно переплетается с оптикой коллоидов и аэрозолей, планетных атмосфер, моря, с радиационной теплопередачей и др. Важные для А. о. результаты были получены при решении проблем физ. химии, астрофизики, океанологии, техники, а методы и результаты А. о. часто находят применение в этих науках.

Изучение оптич. свойств воздуха, моря и суши составляет прямые задачи А. о. Обратные задачи А. о. - разработка оптич. методов зондирования, т. е. определения по измеренным оптич. свойствам воздуха, моря и суши других их физ. характеристик.

Оптич. явления в нижних и верхних слоях атмосферы (слой озона и выше) различны. В верхних слоях под влиянием солнечного излучения происходят гл. обр. фотохим. реакции. Возникающие при этом возбуждённые частицы высвечивают запасённую энергию (полярные сияния, свечение ночного неба и др.). Изучением этих явлений занимается аэрономия. В данной статье они не рассматриваются.

Интерес к оптич. явлениям в атмосфере возник очень давно. Цвет неба и облаков, зори, ложные солнца и т. д. с давних пор считались предвестниками погоды. Таких примет довольно много и одно время считалось даже, что их изучение и есть главная задача А. о. Этой точки зрения придерживался рус. геофизик П. И. Броунов (30-е гг. 20 в.). Однако более подробные исследования показали, что хотя между оптическими и др. физ. явлениями в атмосфере связь несомненно существует, но часто она бывает очень сложной и неоднозначной; оптич. признаки погоды иногда противоречат друг другу. Постепенно стало ясно, что найти связь между оптич. явлениями и погодой можно, лишь изучая природу оптич. явлений и одновременно проникая в механизм физ. явлений, вызывающих изменения погоды.

Первые попытки объяснить синий цвет неба относятся к 16 в. Леонардо да Винчи объяснял синеву небесного свода тем, что белый воздух на тёмном фоне мирового пространства кажется синим. Л. Эйлер считал (1762), что " сами частицы воздуха имеют синеватый оттенок и в общей массе создают интенсивную синеву". В нач. 18 в. И. Ньютон объяснял цвет неба интерференционным отражением солнечного света от мельчайших капель воды, всегда взвешенных в воздухе. В 1809 франц. физик Д. Араго открыл, что свет неба сильно поляризован (см. Поляризация света).

Первое правильное объяснение синего цвета неба дал англ. физик Рэлей (Дж. У. Стрётт) (1871, 1881). По теории Рэлея цветные лучи, образующие солнечный спектр, рассеиваются молекулами воздуха пропорционально Л-4 (где Л-длина световой волны). Синие лучи рассеиваются, примерно, в 16 раз сильнее, чем красные. Поэтому цвет неба (рассеянный солнечный свет) - синий, а цвет Солнца (прямой солнечный свет), когда оно низко над горизонтом и лучи его проходят большой путь в атмосфере, - красный. При этом рассеянный свет должен быть сильно поляризован, а под углом 90° от направления на Солнце поляризация должна быть полной.

Измерения яркости, цвета и поляризации света неба подтвердили теорию Рэлея. Но в 1907 рус. физик Л. И.Мандельштам показал, что если тело, в том числе и воздух, строго однородно, то лучи, рассеянные отдельными молекулами, должны в результате взаимной интерференции гасить друг друга так, что никакого рассеяния вообще наблюдаться не будет. В действительности из-за хаотич. теплового движения в среде всегда возникают флуктуации плотности (т. е. случайно расположенные области сгущений и разрежений), на к-рых и происходит рассеяние. Строгая теория флуктуационного рассеяния, разработанная польск. физиком М. Смо-луховским (1908) и А. Эйнштейном (1910), привела к тем же формулам, к-рые были ранее получены в молекулярной теории Рэлея. Однако все эти работы не учитывали запылённости атмосферы. Воздух, даже самый чистый, - высоко в горах, в Арктике и Антарктике - всегда засорён органич. и минеральной пылью, частицами дыма, капельками воды или растворов. Эти частицы очень малы (радиус ок. 0, 1 " м), их масса, а следовательно, и вес ничтожны, поэтому они так медленно падают на Землю, что малейший ток воздуха снова вздымает их вверх. Т. к. воздух непрерывно перемешивается, то в атмосфере всегда парит как бы сеть из мельчайших пылинок и капель, особенно густая в нижних приземных слоях. Это атмосферный аэрозоль, к-рый и является главной причиной мутности воздуха. Он уменьшает дальность видимости в реальной атмосфере, по сравнению с идеальной, приблизительно в 20 раз. Кроме аэрозоля, большую роль в оптич. явлениях ватмосфере играют водяной пар, углекислый газ и озон, хотя они составляют всего несколько % от объёма газов, из к-рых состоит воздушная смесь. Только эти газы поглощают солнечное и земное излучение и сами излучают радиацию.

В рассеянии света в атмосфере решающее значение имеет аэрозоль. Немецкий физик Г. Ми (1908) построил теорию рассеяния света частицей произвольного размера, которой широко пользуются в А. о. Эта теория была существенно развита и дополнена сов. учёными В. В. Шулейки-ным. (1924), В. А. Фоком (1946), К. С. Шифриным (1951) и голл. учёным ван Хюлстом (1957). Расчёты показывают, что характер рассеяния зависит от отношения радиуса частицы а к длине волны X и от вещества частицы. Малые частицы (а/л" 1) ведут себя так же, как молекулы в теории. Рэлея, но чем больше частицы, тем слабее зависимость рассеяния от длины волны. Большие частицы (a/л" 1) рассеивают свет нейтрально - все волны одинаково. Это, в частности, относится к каплям облаков, радиусы к-рых в 10-20 раз больше длины волны видимого света. Именно поэтому облака имеют белый цвет. По этой же причине небо становится белесоватым, если воздух пыльный или содержит капельки воды. В исследование яркости и поляризации неба большой вклад внесли сов. учёные В. Г. Фесенков, И. И. Тихановский, Е. В. Пясковская-Фесенкова, а в исследование прозрачности облаков, туманов, ниж. слоев атмосферы - А. А. Лебедев, И. А. Хвостиков, С. Ф. Родионов, амер. учёные Д. Стрет-тон и Г. Хаутон, французские учёные Э. и А. Васси, Ж. Брикар.

Наряду с эксперимент. работами создавались также методы расчёта распределения яркости и поляризации по небу, для чего необходимо учитывать многократность рассеяния света и отражения от земной поверхности. Для этого случая рус. физиком О. Д. Хвольсоном (1890) было предложено уравнение переноса излучения. Для безоблачного неба влияние многократного рассеяния не очень велико, но для облаков, к-рые представляют собой сильно мутные среды, это - основной фактор, без к-рого нельзя правильно рассчитать прозрачность облаков, отражение и световой режим внутри них. Большой вклад в разработку методов решения уравнения переноса внесли сов. учёные В. А. Амбарцумян (1941-43), В. В. Соболев (1956), Е. С. Кузнецов (1943-45) и индийский учёный С. Чанд-расекар (1950).

Видимость предметов обусловлена прежде всего прозрачностью воздуха, а также их отражательными свойствами. Отражение диффузно, т. е. рассеяно во все стороны (за исключением отражения от поверхности спокойной воды) и для разных поверхностей происходит по-разному, в результате чего (для несамосветящихся тел) возникает яркостный контраст предмета с фоном. Если контраст больше нек-рого порогового значения, то предмет виден; если меньше, то предмет теряется на общем фоне. Дальность видимости предмета зависит от прозрачности воздуха и от освещённости (в сумерки и днём порог различения неодинаков). Видимость (прозрачность атмосферы) входит в число основных метеорологич. элементов, наблюдения над к-рыми ведут метеорологич. станции. Исследование условий, влияющих на горизонтальную и наклонную видимость (на фоне неба илиЗемли) - важная прикладная задача А. о. В её решении значит. результаты получили сов. учёные В. В. Шаронов, Н. Г. Болдырев, В. А. Берёзкин, В. А. Фаас, нем. учёный X. Кошмидер, канад. учёный Д. Мидлтон.

Большое значение имеет изучение условий распространения в атмосфере невидимых инфракрасных волн длиной 3- 50 мкм, к-рые обусловливают лучистую передачу тепла (механизм её состоит в поглощении и последующем переизлучении). Очень важны прямые измерения в свободной атмосфере, к-рые могут быть выполнены с самолётов или с искусств. спутников Земли (ИСЗ). В исследовании лучистой теплопередачи существенные результаты были получены советскими учёными А. И. Лебединским, В. Г. Кастровым, К. Я. Кондратьевым, Б. С. Непорентом, Е. М. Фейгельсоном и американскими - Д. Хоуардом и Р. Гуди.

При постановке обратных задач А. о. возникают две трудности: во-первых, нужно установить, что в оптич. информации содержатся нужные данные, и, во-вторых, - указать способ их извлечения и необходимую точность измерений. В. Г. Фесенков ещё в 1923 показал, что по изменению яркости сумеречного неба можно судить о строении атмосферы на высотах более 30 км. Через 30 лет сведения о строении стратосферы и ионосферы, полученные непосредственно с помощью ракет, подтвердили данные сумеречного метода. В развитие сумеречного метода внесли значительный вклад сов. учёные Г. В. Розенберг, Н. М. Штауде. Удалось разработать неск. методов, позволяющих исследовать строение мутных сред по особенностям их светорассеяния, которые нашли применение не только в геофизике. Наибольший интерес вызывает разработка методов зондирования атмосферы с ИСЗ для определения темп-ры земной поверхности или облаков по инфракрасному излучению, приходящему на спутник. Исследуется также способ определения вертикальных профилей темп-ры и влажности по характеру приходящего излучения. В разработке этого метода важные результаты получены сов. учёным М. С. Малкевичем, американским - Л. Капланом и японским - Г. Ямамото.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.