Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Математика. I. Определение предмета математики, связь с другими науками и техникой 95 страница






Создание новой М. переменных величин в 17 в. было делом учёных передовых стран Зап. Европы, в первую очередь И. Ньютона и Г. Лейбница. В 18 в. одним из осн. центров научных математич. исследований становится также Петерб. академия наук, где работал ряд крупнейших математиков того времени иностр. происхождения (Л. Эйлер, Д. Бернулли) и постепенно складывается русская математич. школа, блестяще развернувшая свои исследования с нач. 19 в. 17 век. Охарактеризованный выше новый этап развития М. органически связан с созданием в 17 в. математич. естествознания, имеющего целью объяснение течения отдельных природных явлений действием общих, математически сформулированных законов природы. На протяжении 17 в. действительно глубокие и обширные математич. исследования относятся лишь к двум областям естественных наук - к механике [Г. Галилей открывает законы падения тел (1632, 1638), И. Кеплер - законы движения планет (1609, 1619), И. Ньютон - закон всемирного тяготения (1687)] и к оптике [Г. Галилей (1609) и И. Кеплер (1611) сооружают зрительные трубы, И. Ньютон развивает оптику на основе теории истечения, X. Гюйгенс и Р. Гук - на основе волновой теории]. Тем не менее рационалистич. философия 17 в. выдвигает идею универсальности математич. метода (Р. Декарт, Б. Спиноза, Г. Лейбниц), придающую особенную яркость устремлениям этой, по преимуществу философской, эпохи в развитии М.

Серьёзные новые математич. проблемы выдвигают перед М. в 17 в. навигация (необходимость усовершенствования часового дела и создания точных хронометров), а также картография, баллистика, гидравлика. Авторы 17 в. понимают и любят подчёркивать большое практич. значение М. Опираясь на свою тесную связь с естествознанием, М. 17 в. смогла подняться на новый этап развития. Новые понятия, не укладывающиеся в старые формально-логич. категории М., получали своё оправдание в соответствии реальным соотношениям действительного мира. Так, напр., реальность понятия производной вытекала из реальности понятия скорости в механике; поэтому вопрос заключался не в том, можно ли логически оправдать это понятие, а лишь в том, как это сделать.

Математич. достижения 17 в. начинаются открытием логарифмов (Дж. Непер, опубликовавший свои таблицы в 1614). В 1637 Р. Декарт публикует свою " Геометрию", содержащую основы координатного метода в геометрии, классификацию кривых с подразделением их на алгебраические и трансцендентные. В тесной связи с возможностью представить корни уравнения Р(х) = 0 точками пересечения кривой у = Р(х) с осью абсцисс в алгебре исследуются действительные корни уравнения любой степени (Р. Декарт, И. Ньютон, М. Ролль). Исследования П. Ферма о максимумах и минимумах и разыскании касательных к кривым уже содержат в себе по существу приёмы дифференциального исчисления, но самые эти приёмы ещё не выделены и не развиты. Другим источником анализа бесконечно малых является развитый И. Кеплером (1615) и Б. Кавальери (1635) " неделимых" метод, применённый ими к определению объёмов тел вращения и ряду других задач. Так, в геометрич. форме были по существу созданы начала дифференциального и интегрального исчисления.

Параллельно развивается учение о бесконечных рядах. Свойства простейших рядов, начиная с геометрич. прогрессии, изучил Дж. Валлис (1685). Н. Меркатор (1668) получил разложение ln(1+ х) в степенной ряд. И. Ньютон нашёл (1665- 1669) формулу бинома для любого показателя, степенные ряды функций ех, sin х, arc sin х. В дальнейшем развитии учения о бесконечных рядах приняли участие почти все математики 17 в. (Дж. Валлис, X. Гюйгенс, Г. Лейбниц, Я. Бернулли и др.).

С созданием координатного метода и распространением представлений о направленных механич. величинах (скорости, ускорения) понятие отрицательного числа приобрело полную наглядность и ясность. Наоборот, комплексные числа, по-прежнему оставаясь побочным продуктом алгебраич. аппарата, продолжали быть по преимуществу лишь предметом бесплодных споров.

К последней трети 17 в. относится открытие дифференциального и интегрального исчисления в собственном смысле слова. В отношении публикации приоритет этого открытия принадлежит Г. Лейбницу, давшему развёрнутое изложение осн. идей нового исчисления в статьях, опубл. в 1682-86. В отношении же времени фактического получения осн. результатов имеются все основания считать приоритет принадлежащим И. Ньютону, к-рый к основным идеям дифференциального и интегрального исчисления пришёл в течение 1665-66. " Анализ с помощью уравнений" И. Ньютона в 1669 был передан им в рукописи англ, математикам И. Барроу и Дж. Коллинзу и получил широкую известность среди англ, математиков. " Метод флюксий" - сочинение, в к-ром И. Ньютон дал вполне законченное систематич. изложение своей теории, - был написан в 1670-71 (издан в 1736). Г. Лейбниц же начал свои исследования по анализу бесконечно малых лить в 1673. И. Ньютон и Г. Лейбниц впервые в общем виде рассмотрели основные для нового исчисления операции дифференцирования и интегрирования функций, установили связь между этими операциями (т. н. формула Ньютона - Лейбница) и разработали для них общий единообразный алгоритм. Подход к делу у И. Ньютона и Г. Лейбница, однако, различен. Для И. Ньютона исходными понятиями являются понятия " флюенты" (переменной величины) и её " флюксии" (скорости её изменения). Прямой задаче нахождения флюксий и соотношений между флюксиями по заданным флюентам (дифференцирование и составление дифференциальных уравнений) И. Ньютон противопоставлял обратную задачу нахождения флюент по заданным соотношениям между флюксиями, т. е. сразу общую задачу интегрирования дифференциальных уравнении; задача нахождения первообразной появляется здесь как частный случай интегрирования дифференциального уравнения
[ris]
Такая точка зрения была вполне естественна для И. Ньютона как создателя ма-тематич. естествознания: его исчисление флюксий являлось просто отражением той идеи, что элементарные законы природы выражаются дифференциальными уравнениями, а предсказание хода описываемых этими уравнениями процессов требует их интегрирования (см. Флюксий исчисление). Для Г. Лейбница в центре внимания находился вопрос о переходе от алгебры конечного к алгебре бесконечно малых; интеграл воспринимался прежде всего как сумма бесконечно большого числа бесконечно малых, а основным понятием дифференциального исчисления являлись дифференциалы - бесконечно малые приращения переменных величин (наоборот, И. Ньютон, вводя соответствующее понятие " момента", стремился в более поздних работах от него освободиться). С публикации работ Г. Лейбница в континентальной Европе начался период интенсивной коллективной работы над дифференциальным и интегральным исчислением, интегрированием дифференциальных уравнений и геометрич. приложениями анализа, в к-рой принимали участие, кроме самого Г. Лейбница, Я. Бернулли, И. Бернулли, Г. Лопиталъ и др. Здесь создаётся совр. стиль мате-матич. работы, при к-ром полученные результаты немедленно публикуются в журнальных статьях и уже очень скоро после опубликования используются в исследованиях др. учёных.

Кроме аналитич. геометрии, развивается в тесной связи с алгеброй и анализом дифференциальная геометрия, в 17 в. закладываются основы дальнейшего развития чистой геометрии гл. обр. в направлении создания осн. понятий проективной геометрии. Из других открытий 17 в. следует отметить исследования по теории чисел (Б. Паскаль, П. Ферма); разработку осн. понятий комбинаторики (П. Ферма, Б. Паскаль, Г. Лейбниц); первые работы по теории вероятностей (П. Ферма, Б. Паскаль), увенчавшиеся в конце века результатом принципиального значения - открытием простейшей формы больших чисел закона (Я. Бернулли, опубл. в 1713). Необходимо указать ещё на построение Б. Паскалем (1641) и Г. Лейбницем (1673-74) первых счётных машин, оставшееся надолго, впрочем, без практич. последствий.

18 век. В нач. 18 в. общий стиль математич. исследований постепенно меняется. Успех 17 в., обусловленный в основном новизной метода, создавался гл. обр. смелостью и глубиной общих идей, что сближало М. с философией. К началу 18 в. развитие новых областей М., созданных в 17 в., достигло того уровня, при к-ром дальнейшее продвижение вперёд стало требовать в первую очередь искусства в овладении математич. аппаратом и изобретательности в разыскании неожиданных обходных решений трудных задач. Из двух величайших математиков 18 в. Л. Эйлер является наиболее ярким представителем этой виртуозной тенденции, а Ж. Лагранж, быть может, уступая Л. Эйлеру в количестве и разнообразии решённых задач, соединил блестящую технику с широкими обобщающими концепциями, типичными для франц. матем. школы 2-й пол. 18 в., тесно связанной с большим филос. движением франц. просветителей и материалистов. Увлечение необычайной силой аппарата матем. анализа приводит, естественно, к вере в возможность его чисто автоматич. развития, в безошибочность матем. выкладок даже тогда, когда в них входят символы, лишённые смысла. Если при создании анализа бесконечно малых сказывалось неумение логически справиться с идеями, имевшими полную наглядную убедительность, то теперь открыто проповедуется право вычислять по обычным правилам лишённые непосредственно смысла математич. выражения, не опираясь ни на наглядность, ни на к.-л. логич. оправдание законности таких операций. Из старшего поколения в эту сторону всё больше склоняется Г. Лейбниц, к-рый в 1702 по поводу интегрирования рациональных дробей при помощи их разложения на мнимые выражения говорит о " чудесном вмешательстве идеального мира" и т. п. Более реалистически настроенный Л. Эйлер не говорит о чудесах, но воспринимает законность операций с мнимыми числами и с расходящимися рядами как эмпирич. факт, подтверждаемый правильностью получаемых при помощи подобных преобразований следствий. Хотя работа по рациональному уяснению основ анализа бесконечно малых была начата, систематическое проведение логич. обоснования анализа было осуществлено лишь в 19 в.

Если виднейшие математики 17 в. очень часто были в то же время философами или физиками-экспериментаторами, то в 18 в. научная работа математика становится самостоятельной профессией. Математики 18 в.- это люди из разных кругов общества, рано выделившиеся своими математич. способностями, с быстро развивающейся академич. карьерой (Л. Эйлер, происходя из пасторской семьи в Базеле, в возрасте 20 лет был приглашён адъюнктом в Петерб. академию наук, 23 лет становится там же профессором, 39 лет - председателем физико-математич. класса Берлинской академии наук; Ж. Лагранж - сын французского чиновника, 19 лет - профессор в Турине, 30 лет - председатель физико-математич. класса Берлинской академии наук; П. Лаплас - сын франц. крестьянина, 22 лет - профессор военной школы в Париже, 36 лет - член Парижской академии наук). При этом, однако, математич. естествознание (механика, математич. физика) и технич. применения М. остаются в сфере деятельности математиков. Л. Эйлер занимается вопросами кораблестроения и оптики, Ж. Лагранж создаёт основы аналитич. механики, П. Лаплас, считавший себя в основном математиком, также является крупнейшим астрономом и физиком своего времени и т. д.

М. 18 в. обогатилась многими выдающимися результатами. Благодаря работам Л. Эйлера, Ж. Лагранжа и А. Лежандра теория чисел приобретает характер систематич. науки. Ж. Лагранж дал (1769, опубл. в 1771) общее решение неопределённых уравнений второй степени. Л. Эйлер установил (1772, опубл. в 1783) закон взаимности для квадратичных вычетов. Он же привлёк (1737, 1748, 1749) для изучения простых чисел дзета-функцию, чем положил начало аналитич. теории чисел.

При помощи разложений в непрерывные дроби Л. Эйлер доказал (1737, опубл. в 1744) иррациональность е и ё2, а И. Ламберт (1766, опубл. в 1768) - иррациональность я. В алгебре Г. Крамер (1750) ввёл для решения систем линейных уравнений определители. Л. Эйлер рассматривал как эмпирически установленный факт существование у каждого алгебраич. уравнения корня вида

А + В на корень из -1. Постепенно укореняется убеждение, что вообще мнимые выражения (не только в алгебре, но и в анализе)_ всегда приводимы к виду А + В на корень из -1. Ж. Д'Аламбер доказал (1748), что модуль многочлена не может иметь минимума, отличного от нуля (т. н. лемма Д'Аламбера), считая это за доказательство существования корня у любого алгебраич. уравнения. Формулы А. Муавра и Л. Эйлера, связывающие показательную и тригонометрич. функции комплексных аргументов, привели к дальнейшему расширению применений комплексных чисел в анализе. И. Ньютон, Дж. Стирлинг, Л. Эйлер и П. Лаплас заложили основы конечных разностей исчисления. Б. Тейлор открыл (1715) свою формулу разложения произвольной функции в степенной ряд. У исследователей 18 в., особенно у Л. Эйлера, ряды становятся одним из самых мощных и гибких орудий анализа. С Ж. Д'Аламбера начинается серьёзное изучение условий сходимости рядов. Л. Эйлер, Ж. Лагранж и особенно А. Ле-жандр заложили основы исследования эллиптич. интегралов - первого вида неэлементарных функций, подвергнутого глубокому специальному изучению. Большое внимание уделялось дифференциальным уравнениям, в частности Л. Эйлер дал (1739, опубл. в 1743) первый метод решения линейного дифференциального уравнения любого порядка с постоянными коэффициентами, Ж. Д'Аламбер рассматривал системы дифференциальных уравнений, Ж. Лагранж и П. Лаплас развивали общую теорию линейных дифференциальных уравнений любого порядка. Л. Эйлер, Г. Монж и Ж. Лагранж заложили основы общей теории дифференциальных уравнений с частными производными первого порядка, а Л. Эйлер, Г. Монж и П. Лаплас - второго порядка. Специальный интерес представляет введение в анализ разложения функций в тригонометрич. ряды, т. к. в связи с этой задачей между Л. Эйлером, Д. Бернулли, Ж. Д'Аламбером, Г. Монжем и Ж. Лагранжем развернулась полемика по вопросу о понятии функции, подготовившая фундаментальные результаты 19 в. о соотношении между аналитич. выражением и произвольным заданием функции. Наконец, новым отделом анализа, возникшим в 18 в., является вариационное исчисление, созданное Л. Эйлером и Ж. Лагранжем. А. Муавр, Я. Бернулли, П. Лаплас на основе отд. достижений 17-18 вв. заложили начала вероятностей теории.

В области геометрии Л. Эйлер привёл к завершению систему элементарной аналитич. геометрии. В работах Л. Эйлера, А. Клеро, Г. Монжа и Ж. Менье были заложены основы дифференц. геометрии пространственных кривых и поверхностей. И. Ламберт развил теорию перспективы, а Г. Монж придал окончательную форму начертательной геометрии.

Из приведённого обзора видно, что М. 18 в., основываясь на идеях 17 в., по размаху работы далеко превзошла предыдущие века. Этот расцвет М. был связан по преимуществу с деятельностью академий; университеты играли меньшую роль. Отдалённость крупнейших математиков от университетского преподавания возмещалась той энергией, с к-рой все они, начиная с Л. Эйлера и Ж. Лагранжа, писали учебники и обширные, включающие отдельные исследования, трактаты.

III. СОВРЕМЕННАЯ МАТЕМАТИКА Все созданные в 17 и 18 вв. разделы математич. анализа продолжали с большой интенсивностью развиваться в 19 и 20 вв. Чрезвычайно расширился за это время и круг их применений к задачам, выдвигаемым естествознанием и техникой. Однако, помимо этого количественного роста, с последних лет 18 в. и в нач. 19 в. в развитии М. наблюдается и ряд существенно новых черт.

1. Расширение предмета математики Накопленный в 17 и 18 вв. огромный фактич. материал привёл к необходимости углублённого логич. анализа и объединения его с новых точек зрения. Открытие и введение в употребление геометрия, интерпретации комплексных чисел [датский землемер К. Вессель, 1799, и франц. математик Ж. Арган (Арганд), 1806], доказательство неразрешимости в радикалах общего алгебраич. уравнения пятой степени (Н. Абель, 1824), разработка О. Коши основ теории функций комплексного переменного, его работы по строгому обоснованию анализа бесконечно малых, создание Н. И. Лобачевским (1826, опубл. в 1829-30) и Я. Больяй (1832) неевклидовой геометрии, работы К. Гаусса (1827) по внутренней геометрии поверхностей - типичные примеры наметившихся на рубеже 18 и 19 вв. новых тенденций в развитии М.

Связь М. с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, но также из внутренних потребностей самой М. Таково в основном было развитие теории функций комплексного переменного, занявшей в начале и сер. 19 в. центральное положение во всём математич. анализе.

Другим замечательным примером теории, возникшей в результате внутреннего развития самой М., явилась " воображаемая геометрия" Лобачевского (см. Лобачевского геометрия).

Можно привести ещё один пример того, как начавшийся в конце 18 в. и 1-й пол. 19 в. пересмотр с более общих точек зрения добытых ранее конкретных математич. фактов нашёл во 2-й пол. 19 в. и в 20 в. мощную поддержку в новых запросах естествознания. Теория групп ведёт своё начало с рассмотрения Ж. Лагранжем (1771) групп подстановок в связи с проблемой разрешимости в радикалах алгебраич. уравнений высших степеней. Э. Галуа (1830-32, опубл. в 1832, 1846) при помощи теории групп подстановок дал окончательный ответ на вопрос об условиях разрешимости в радикалах алгебраич. уравнений любой степени. В сер. 19 в. А. Кэли дал общее " абстрактное" определение группы. С. Ли разработал, исходя из общих проблем геометрии, теорию непрерывных групп. И лишь после этого Е. С. Фёдоров (1890) и нем. учёный А. Шёнфлис (1891) установили, что теоретико-групповым закономерностям подчинено строение кристаллов; ещё позднее теория групп становится мощным средством исследования в квантовой физике.

В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного исчисления и тензорного исчисления. Перенесение векторных и тензорных представлений на бесконечномерные величины происходит в рамках функционального анализа и тесно связывается с потребностями современной физики.

Таким образом, в результате как внутренних потребностей М., так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых М., чрезвычайно расширяется; в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, всё разнообразие форм пространств любого числа измерений и т. п. При таком широком понимании терминов " количественные отношения" и " пространственные формы" приведённое в начале статьи определение М. применимо и на новом, современном этапе её развития.

Существенная новизна начавшегося в 19 в. этапа развития М. состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, напр., введение в употребление отрицательных и комплексных чисел и точная формулировка правил действий с ними требовали длительной работы, то теперь развитие М. потребовало выработки приёмов сознательного и планомерного создания новых геометрических систем, новых " алгебр" с " некоммутативным" или даже " неассоциативным" умножением и т. д. по мере возникновения в них потребности. Так, вопрос о том, не следует ли, напр., ради анализа и синтеза того или иного типа релейно-контактных схем создать новую " алгебру" с новыми правилами действий, является не вызывающим особого удивления делом повседневной научно-технич. практики. Но трудно переоценить важность той перестройки всего склада математич. мышления, к-рая для этого должна была произойти в течение 19 в. С этой, идейной стороны наиболее значительным среди открытий нач. 19 в. явилось открытие неевклидовой геометрии Лобачевского. Именно на примере этой геометрии была преодолена вера в незыблемость освящённых тысячелетним развитием М. аксиом, была понята возможность создания существенно новых математич. теорий путём правильно выполненной абстракции от налагавшихся ранее ограничений, не имеющих внутренней логич. необходимости, и, наконец, было обнаружено, что подобная абстрактная теория может получить со временем всё более широкие, вполне конкретные применения.

Чрезвычайное расширение предмета М. привлекло в 19 в. усиленное внимание к вопросам её " обоснования", т. е. критич. пересмотру её исходных положений (аксиом), построению строгой системы определений и доказательств, а также критич. рассмотрению логич. приёмов, употребляемых при этих доказательствах. Работы по строгому обоснованию тех или иных отделов М. справедливо занимают значительное место в М. 19 и 20 вв. В применении к основам анализа (теория действительных чисел, теория пределов и строгое обоснование всех приёмов дифференциального и интегрального исчисления) результаты этой работы с большей или меньшей полнотой излагаются в настоящее время в большинстве учебников (даже чисто практич.характера). Однако до последнего времени встречаются случаи, когда строгое обоснование возникшей из практич. потребностей математич. теории запаздывает. Так в течение долгого времени уже на рубеже 19 и 20 вв. было с операционным исчислением, получившим весьма широкие применения в механике и электротехнике. Лишь с большим запозданием было построено логически безупречное изложение математич. теории вероятностей. И в настоящее время ещё отсутствует строгое обоснование многих математич. методов, широко применяемых в современной теоретич. физике, где много ценных результатов получается при помощи " незаконных" математич. приёмов.

Стандарт требований к логич. строгости, остающийся господствующим в практич. работе математиков над развитием отдельных математич. теорий, сложился только к концу 19 в. Этот стандарт основан на теоретико-множественной концепции строения любой математич. теории (см. Множеств теория, Аксиоматический метод). С этой точки зрения любая математич. теория имеет дело с одним или несколькими множествами объектов, связанных между собой нек-рыми отношениями. Все формальные свойства этих объектов и отношений, необходимые для развития теории, фиксируются в виде аксиом, не затрагивающих конкретной природы самих объектов и отношений. Теория применима к любой системе объектов с отношениями, удовлетворяющей положенной в её основу системе аксиом. В соответствии с этим теория может считаться логически строго построенной только в том случае, если при её развитии не используется никаких конкретных, не упомянутых в аксиомах, свойств изучаемых объектов и отношений между ними, а все новые объекты или отношения, вводимые по мере развития теории сверх упомянутых в аксиомах, формально определяются через эти последние.

Другую сторону строения любой математич. теории освещает математич. логика. Система аксиом в изложенном выше (теоретико-множественном) понимании лишь ограничивает извне область применений данной математич. теории, указывая свойства подлежащей изучению системы объектов с отношениями, но не даёт никаких указаний относительно логич. средств, при помощи к-рых эту математич. теорию придётся развивать. Напр., свойства системы натуральных чисел с точностью до изоморфизма задаются при помощи очень простой системы аксиом. Тем не менее решение вопросов, ответ на к-рые в принципе однозначно предопределён принятием этой системы аксиом, оказывается часто очень сложным: именно теория чисел изобилует давно поставленными и очень простыми по формулировке проблемами, не нашедшими и до настоящего времени решения. Возникает, естественно, вопрос о том, происходит ли это только потому, что решение нек-рых просто формулируемых проблем теории чисел требует очень длинной цепи рассуждений, составленной из известных и уже вошедших в употребление элементарных звеньев, или же потому, что для решения нек-рых проблем теории чисел необходимы существенно новые, не употреблявшиеся ранее приёмы логич. вывода.

Современная математич. логика дала на этот вопрос определённый ответ: никакая единая дедуктивная теория не может исчерпать разнообразия проблем теории чисел. Точнее, уже в пределах теории натуральных чисел можно сформулировать последовательность проблем p1, p2,..., Рп,... такого рода, что для любой дедуктивной теории среди этих проблем найдётся неразрешимая в пределах данной теории (К. Гёделъ). При этом под " дедуктивной теорией" понимается теория, к-рая развивается из конечного числа аксиом при помощи построения сколь угодно длинных цепей рассуждений, составленных из звеньев, принадлежащих к конечному числу фиксированных для данной теории элементарных способов логич. вывода.

Таким образом было обнаружено, что понятие математич. теории в смысле теории, охватываемой единой системой аксиом теоретико-множественного типа, существенно шире, чем логич. понятие дедуктивной теории: даже при развитии арифметики натуральных чисел неизбежно неограниченное обращение к существенно новым способам логич. рассуждений, выходящим за пределы любого конечного набора стандартизированных приёмов.

Все те результаты, к-рые могут быть получены в пределах одной дедуктивной теории, могут быть также получены вычислением, производимым по данным раз навсегда правилам. Если

для решения нек-рого класса проблем даётся строго определённый рецепт их вычислительного решения, то говорят о математич. алгоритме. С самого создания достаточно разработанной системы математических знаков проблемы построения достаточно общих и в то же время кратких алгоритмов занимали большое место в истории М. Но только в последние десятилетия в результате развития математич. логики начала создаваться общая теория алгоритмов и " алгоритмической разрешимости" математич. проблем. Практич. перспективы этих теорий, по-видимому, весьма велики, особенно в связи с современным развитием вычислит, техники, позволяющей заменить сложные математич. алгоритмы работой машин.

2. История математики в 19 в. и начале 20 в. Начало и середина 19 в. В нач. 19 в.происходит новое значит, расширение области приложений математич. анализа. Если до этого времени осн. отделами физики, требовавшими большого математич. аппарата, оставались механика и оптика, то теперь к ним присоединяются электродинамика, теория магнетизма и термодинамика. Получают широкое развитие важнейшие разделы механики непрерывных сред, из к-рых только гидродинамика несжимаемой идеальной жидкости была создана ещё в 18 в. Д. Бернулли, Л. Эйлером, Ж. Д'Аламбером и Ж. Лагранжем. Быстро растут и математич. запросы техники. В нач. 19 в.- это вопросы термодинамики паровых машин, технич. механики, баллистики. В качестве основного аппарата новых областей механики и математической физики усиленно разрабатывается теория дифференциальных уравнений с частными производными и особенно теория потенциала. В этом направлении работает большинство крупных аналитиков начала и середины века - К. Гаусс, Ж. Фурье, С. Пуассон, О. Коши, П. Дирихле, Дж. Грин, М. В. Остроградский. М. В. Остроградский заложил основы вариационного исчисления для функций нескольких переменных. В результате исследований по уравнениям математич. физики в работах Дж. Стокса и др. англ, математиков возникает векторный анализ.

Несмотря на господствовавшее в естествознании начала 19 в. механистич. убеждение в возможности описать все природные явления дифференциальными уравнениями, под давлением запросов практики получает значительное дальнейшее развитие теория вероятностей. П. Лаплас и С. Пуассон создают с этой целью новый мощный аналитич. аппарат. П. Л. Чебышев даёт строгое обоснование элементов теории вероятностей и доказывает свою знаменитую теорему (1867), объединившую в одной общей формулировке известные ранее формы закона больших чисел.

Как уже отмечалось, наряду с развитием работ, возникших из новых запросов естествознания и техники, чрезвычайное внимание математиков с самого начала 19 в. привлекают вопросы строгого обоснования анализа (О. Коши, 1821, 1823). Н. И. Лобачевский (1834) и, позднее, П. Дирихле (1837) отчётливо сформулировали определение функции как совершенно произвольного соответствия. В 1799 К. Гаусс опубликовал первое доказательство основной теоремы алгебры, осторожно формулируя, однако, эту теорему в чисто действительных терминах (разложимость действительного многочлена на действительные множители первой и второй степени). Лишь значительно позже (1831) К. Гаусс явно изложил теорию комплексных чисел.

На основе ясного понимания природы комплексных чисел возникает теория функций комплексного переменного. К. Гаусс очень много знал в этой области, но почти ничего не опубликовал. Общие основы теории были заложены О. Коши, теория эллиптич. функций была развита Н. Абелем и К. Якоби. Уже на этом этапе характерно, в отличие от чисто алгоритмич. подхода 18 в., сосредоточение внимания на выяснении своеобразия поведения функций в комплексной области и основных господствующих здесь геометрич. закономерностей (начиная с зависимости радиуса сходимости ряда Тейлора от расположения особых точек, открытой О. Коши). Этот в известном смысле слова " качественный" и геомет-рич. характер теории функций комплексного переменного ещё усиливается в сер. 19 в. у Б. Римана. Здесь оказывается, что естественным геометрич. носителем аналитич. функции в случае её многозначности является не плоскость комплексного переменного, а т. н. риманова поверхность, соответствующая данной функции. К. Вейерштрасс достигает той же общности, что и Б. Риман, оставаясь на почве чистого анализа. Однако геометрич. идеи Б. Римана оказываются в дальнейшем всё более определяющими весь стиль мышления в области теории функций комплексного переменного.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.