Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Математика. I. Определение предмета математики, связь с другими науками и техникой 94 страница






Сохранившиеся математич. тексты Др. Египта (1-я пол. 2-го тыс. до н. э.) состоят по преимуществу из примеров на решение отдельных задач и, в лучшем случае, рецептов для их решения, которые иногда удаётся понять, лишь анализируя числовые примеры, данные в текстах. Следует говорить именно о рецептах для решения отдельных типов задач, т. к. математич. теории в смысле доказательств общих теорем, видимо, вовсе не существовало. Об этом свидетельствует, напр., то, что точные решения употреблялись без всякого отличия от приближённых. Тем не менее самый запас установленных математич. фактов был, в соответствии с высокой строительной техникой, сложностью земельных отношений, потребностью в точном календаре и т. п., довольно велик (см. Папирусы математические).

Математич. текстов, позволяющих судить о М. в Вавилонии, несравненно больше, чем египетских. Вавилонские клинописные математические тексты охватывают период от 2-го тыс. до н. э. до возникновения и развития греч. М. Вавилония этого времени получила от более раннего шумерского периода развитую смешанную десятично-шестидесятиричную систему счисления, заключавшую в себе уже позиционный принцип (одни и те же знаки обозначают одно и то же число единиц разных шестидесятиричных разрядов). Деление при помощи таблиц обратных чисел сводилось к умножению. Кроме таблиц обратных чисел, имелись таблицы произведений, квадратов, квадратных и кубических корней. Из достижений вавилонской М. в области геометрии, выходящих за пределы познаний египтян, следует отметить разработанное измерение углов и нек-рые начатки тригонометрии, связанные, очевидно, с развитием астрономии. Вавилонянам была уже известна теорема Пифагора.

2. Период элементарной математики. Только после накопления большого конкретного материала в виде разрозненных приёмов арифметич. вычислений, способов определения площадей и объёмов и т. п. возникает М. как самостоятельная наука с ясным пониманием своеобразия её метода и необходимости систематич. развития её основных понятий и предложений в достаточно общей форме. В применении к арифметике и алгебре возможно, что указанный процесс начался уже в Вавилонии. Однако вполне определилось это новое течение, заключавшееся в систематическом и логически последовательном построении основ математич. науки, в Др. Греции. Созданная древними греками система изложения элементарной геометрии на два тысячелетия вперёд сделалась образцом дедуктивного построения математич. теории. Из арифметики постепенно вырастает чисел теория. Создаётся систематич. учение о величинах к измерении. Процесс формирования (в связи с задачей измерения величин) понятия действительного числа (см. Число) оказывается весьма длительным. Дело в том, что понятия иррационального и отрицательного числа относятся к тем более сложным математич. абстракциям, к-рые, в отличие от понятий натурального числа, дроби или геометрич. фигуры, не имеют достаточно прочной опоры в донаучном общечеловеческом опыте.

Создание алгебры как буквенного исчисления завершается лишь в конце рассматриваемого двухтысяче-летнего периода. Специальные обозначения для неизвестных появляются у греч. математика Диофанта (вероятно, 3 в.) и более систематически - в Индии в 7 в., но обозначение буквами коэффициентов уравнения введено только в 16 в. франц. математиком Ф. Виетом.

Развитие геодезии и астрономии рано приводит к детальной разработке тригонометрии, как плоской, так и сферической.

Период элементарной М. заканчивается (в Зап. Европе в нач. 17 в.), когда центр тяжести математич. интересов переносится в область М. переменных величин.

Древняя Греция. Развитие М. в Др. Греции приняло существенно иное направление, чем на Востоке. Если в отношении техники проведения вычислений, искусства решения задач алгебраич. характера и разработки математич. средств астрономии лишь в эллинистич. эпоху был достигнут и превзойдён уровень вавилонской М., то уже гораздо раньше М. в Др. Греции вступила в совершенно новый этап логич. развития. Появилась потребность в отчётливых математич. доказательствах, были сделаны первые попытки систематич. построения математич. теории. М., как и всё научное и художественное творчество, перестала быть безличной, какой она была в странах Др. Востока; она создаётся теперь известными по именам математиками, оставившими после себя математические сочинения (дошедшие до нас лишь в отрывках, сохранённых позднейшими комментаторами).

Греки считали себя в области арифметики учениками финикиян, объясняя высокое развитие арифметики у них потребностями их обширной торговли; начало же греч. геометрии традиция связывает с путешествиями в Египет (7- 6 вв. до н. э.) первых греч. геометров и философов Фалеса Милетского и Пифагора Самосского. В школе Пифагора арифметика из простого искусства счисления перерастает в теорию чисел. Суммируются простейшие арифметич. прогрессии [в частности, 1 + 3 + 5 + +... + (2п - 1) = n2], изучаются делимость чисел, различные виды средних (арифметическое, геометрическое и гармоническое), вопросы теории чисел (напр., разыскание т. н. совершенных чисел) связываются в школе Пифагора с мистич., магич. значением, приписываемым числовым соотношениям. В связи с геометрич. теоремой Пифагора был найден метод получения неограниченного ряда троек чпифагоровых чисел", т. е. троек целых чисел, удовлетворяющих соотношению а2 + b2 = с2. В области геометрии задачи, к-рыми занимались греч. геометры 6-5 вв. до н. э. после усвоения египетского наследства, также естественно возникают из простейших запросов строительного искусства, землемерия и навигации. Таковы, напр., вопросы о соотношении между длинами катетов и гипотенузы прямоугольного треугольника (выражаемом теоремой Пифагора), о соотношении между площадями подобных фигур, квадратуре круга, трисекции угла и удвоении куба. Новым, однако, является подход к этим задачам, ставший необходимым с усложнением предмета исследования. Не ограничиваясь приближёнными, эмпирически найденными решениями, греч. геометры ищут точных доказательств и логически исчерпывающих решений проблемы. Ярким примером этой новой тенденции может служить доказательство несоизмеримости диагонали квадрата с его стороной. Во 2-й пол. 5 в. до н. э. философская и научная жизнь Греции сосредоточивается в Афинах. Здесь протекает основная деятельность Гиппия Элидского и Гиппократа Хиосского. Первый систематич. учебник геометрии приписывают Гиппократу Хиосскому. К этому времени, несомненно, уже была создана разработанная система геометрии, не пренебрегавшая такими логич. тонкостями, как доказательство случаев равенства треугольников и т. п. Отражением в М. первых, хотя бы и чисто умозрительных, попыток рационального объяснения строения материи явилось едва ли не самое замечательное достижение геометрии 5 в. до н. э.- разыскание всех пяти правильных многогранников - результат поисков идеальных простейших тел, могущих служить основными камнями мироздания. На границе 5 и 4 вв. до н. э. Демокрит, исходя из атомистич. представлений, создаёт способ определения объёмов, послуживший позднее для Архимеда исходным пунктом разработки метода бесконечно малых. В 4 в. до н. э. в обстановке политич. реакции и упадка могущества Афин наступает эпоха известного подчинения М. ограничениям, выдвинутым идеалистич. философией. Наука о числах строго отделяется здесь от " искусства счисления", а геометрия - от " искусства измерения". Опираясь на существование несоизмеримых отрезков, площадей и объёмов, Аристотель налагает общий запрет на применение арифметики к геометрии. В самой геометрии вводится требование об ограничении построениями, осуществимыми при помощи циркуля и линейки. Наиболее значительным конкретным достижением математиков 4 в. до н. э. можно считать связанные с тенденцией к логич. анализу основ геометрии исследования Евдокса Книдского.

Эллинистическая и римская эпоха. С 3 в. до н. э. на протяжении семи столетий основным центром научных и особенно математич. исследований являлась Александрия. Здесь, в обстановке объединения различных мировых культур, больших гос. и строит, задач и невиданного ранее по своей широте гос. покровительства науке, греч. М. достигла своего высшего расцвета. Несмотря на распространение греч. образованности и научных интересов во всём эллинистическом и римском мире, Александрия с её " музеем", являвшимся первым н.-и. институтом в совр. смысле слова, и библиотеками обладала столь большой притягательной силой, что почти все крупнейшие учёные стекались сюда. Из упоминающихся ниже математиков лишь Архимед остался верным родным Сиракузам. Наибольшей • напряжённостью математич. творчества отличается первый век александрийской эпохи (3 в. до н. э.). Этому веку принадлежат Евклид, Архимед, Эратосфен и Аполлоний Пергский.

В своих " Началах" Евклид собрал и подверг окончательной логич. переработке достижения предыдущего периода в области геометрии (см. " Начала" Евклида). Вместе с тем в " Началах" же Евклид впервые заложил основы систематич. теории чисел, -доказывая бесконечность ряда простых чисел и строя законченную теорию делимости. Из геометрич. работ Евклида, не вошедших в " Начала", и работ Аполлония Пергского наибольшее значение для дальнейшего развития М. имело создание законченной теории конических сечений. Основной заслугой

Архимеда в геометрии явилось определение разнообразных площадей и объёмов (в т. ч. площадей параболич. сегмента и поверхности шара, объёмов шара, шарового сегмента, сегмента параболоида и т. д.) и центров тяжести (напр., шарового сегмента и сегмента параболоида); архимедова спираль является лишь одним из примеров изучавшихся в 3 в. до н. э. трансцендентных кривых. После Архимеда, хотя и продолжался рост объёма научных знаний, александрийская наука уже не достигала прежней цельности и глубины; зачатки анализа бесконечно малых, содержавшиеся в эвристич. приёмах Архимеда, не получили дальнейшего развития. Следует сказать, что возникший из прикладных нужд интерес к приближённому измерению величин и приближённым вычислениям не привёл математиков 3 в. до н. э. к отказу от математич. строгости. Все многочисленные приближённые извлечения корней и даже все астрономич. вычисления производились ими с точным указанием границ погрешности, по типу знаменитого архимедова определения длины окружности в форме безукоризненно доказанных неравенств
[ris]

где р - длина окружности с диаметром d. Это отчётливое понимание того, что приближённая М. не есть " нестрогая" М., было позднее надолго забыто.

Существенным недостатком всей М. древнего мира было отсутствие окончательно сформированного понятия иррационального числа. Как уже было указано, это обстоятельство привело философию 4 в. до н. э. к полному отрицанию законности применения арифметики к изучению геометрич. величин. В действительности, в теории пропорций и в исчерпывания методе математикам 4 и 3 вв. до н. э. всё же удалось косвенным образом осуществить это применение арифметики к геометрии. Ближайшие века принесли не положительное разрешение проблемы путём создания фундаментального нового понятия (иррационального числа), а постепенное её забвение, ставшее возможным с постепенной утратой представлений о математич. строгости. На этом этапе истории М. временный отказ от математич. строгости оказался, однако, полезным, открыв возможность беспрепятственного развития алгебры (допускавшейся в рамках строгих концепций евклидовых " Начал" лишь в чрезвычайно стеснительной форме " геометрической алгебры" отрезков, площадей и объёмов). Значительные успехи в этом направлении можно отметить в " Метрике" Герона. Однако самостоятельное и широкое развитие настоящего алгебраич. исчисления встречается лишь в " Арифметике" Диофанта, посвящённой в основном решению уравнений. Относя свои исследования к чистой арифметике, Диофант, естественно, ограничивается, в отличие от практика Герона, рациональными решениями, исключая тем самым возможность геометрич. или механич. приложений своей алгебры. Тригонометрия воспринимается в древнем мире в большой мере как часть астрономии, а не как часть М. К ней так же, как и к вычислит, геометрии Герона, не предъявляется требований полной строгости формулировок и доказательств. Гиппарх первый составил таблицы хорд, исполнявшие роль наших таблиц синусов. Начала сферич. тригонометрии создаются Менелаем и Клавдием Птолемеем.

В области чистой М. деятельность учёных последних веков древнего мира (кроме Диофанта) всё более сосредоточивается на комментировании старых авторов. Труды учёных-комментаторов этого времени [Паппа (Зв.), Прокла (5 в.) и др.], при всей их универсальности, не могли уже в обстановке упадка античного мира привести к объединению изолированно развивавшихся алгебры Диофанта, включённой в астрономию тригонометрии, и откровенно нестрогой вычислит, геометрии Герона в единую, способную к большому развитию науку.

Китай. Наличие у кит. математиков высокоразработанной техники вычислений и интереса к общим алгебраич. методам обнаруживает уже " Арифметика в девяти главах", составленная по более ранним источникам во 2-1 вв. до н. э. Чжан Цаном и Цзин Чоу-чаном.В этом сочинении описываются, в частности, способы извлечения квадратных и кубических корней из целых чисел. Большое число задач формулируется так, что их можно понять только как примеры, служившие для разъяснения отчётливо воспринятой схемы исключения неизвестных в системах линейных уравнений. В связи с календарными расчётами в Китае возник интерес к задачам такого типа: при делении числа на 3 остаток есть 2, при делении на 5 остаток есть 3, а при делении на 7 остаток есть 2, каково это число? Сунь-цзы (между 2 и 6 вв.) и более полно Цинь Цзю-шао (13 в.) дают изложенное на примерах описание регулярного алгоритма для решения таких задач. Примером высокого развития вычислит, методов в геометрии может служить результат Цзу Чун-чжи (2-я пол. 5 в.), к-рый показал, что отношение длины окружности к диаметру лежит в пределах 3, 1415926< Пи< 3, 1415927. Особенно замечательны работы китайцев по численному решению уравнений. Геометрич. задачи, приводящие к уравнениям третьей степени, впервые встречаются у астронома и математика Ван Сяо-туна (1-я пол. 7 в.). Изложение методов решения уравнений четвёртой и высших степеней былодано в работах математиков 13-14 вв. Цинь Цзю-шао, Ли Е, Ян Хуэя и Чжу Ши-цэе.

Индия. Расцвет инд. М. относится к 5-12 вв. (наиболее известны инд. математики Ариабхата, Брахмагупта, Бхаскара). Индийцам принадлежат две осн. заслуги. Первой из них является введение в широкое употребление совр. десятичной системы счисления и систематич. употребление нуля для обозначения отсутствия единиц данного разряда. Происхождение употреблявшихся в Индии цифр, называемых теперь " арабскими", не вполне выяснено. Второй, ещё более важной заслугой инд. математиков является создание алгебры, свободно оперирующей не только с дробями, но и с иррациональными и отрицательными числами. Однако обычно при истолковании решений задач отрицательные решения считаются невозможными. Вообще следует отметить, что в то время как дробные и иррациональные числа с самого момента своего возникновения связаны с измерением непрерывных величин, отрицательные числа возникают в основном из внутренних потребностей алгебры и лишь позднее (в полной мере в 17 в.) получают самостоятельное значение. В тригонометрии заслугой инд. математиков явилось введение линий синуса, косинуса, синус-верзуса.

Средняя Азия и Ближний Восток. Араб, завоевания и кратковременное объединение огромных территорий под властью араб.халифов привели к тому, что в течение 9-15вв. учёные Ср.Азии, Бл.Востока и Пиренейского п-ова пользовались араб, языком. Наука здесь развивается в мировых торговых городах, в обстановке широкого междунар. общения и гос. поддержки больших науч. начинаний. Блестящим завершением этой эпохи явилась в 15 в. деятельность Улугбека, к-рый при своём дворе и обсерватории в Самарканде собрал более ста учёных и организовал долго остававшиеся непревзойдёнными астрономии, наблюдения, вычисление математич. таблиц и т. п.

В зап.-европ. науке длительное время господствовало мнение, что роль -" арабской культуры" в области М. сводится в основном к сохранению и передаче математикам Зап. Европы математич. открытий древнего мира и Индии. (Так, сочинения греч. математиков впервые стали известны в Зап. Европе по араб. переводам.) В действительности вклад математиков, писавших на араб, языке, и в частности математиков, принадлежавших к народам современной советской Ср. Азии и Кавказа (хорезмийских, узбекских, таджикских, азербайджанских), в развитие науки значительно больше.

В 1-й пол. 9 в. Мухаммед бен Муса Хорезми впервые дал изложение алгебры как самостоят, науки. Термин " алгебра" производят от начала названия сочинения Хорезми " Аль-джебр", по к-рому европ. математики раннего средневековья познакомились с решением квадратных уравнений. Омар Хайям систематически изучил уравнения третьей степени, дал их классификацию, выяснил условия их разрешимости (в смысле существования положительных корней). Хайям в своём алгебраич. трактате говорит, что он много занимался поисками точного решения уравнений третьей степени. В этом направлении поиски среднеазиатских математиков не увенчались успехом, но им были хорошо известны как геометрические (при помощи конич. сечений), так и приближённые численные методы решения. Заимствовав от индийцев десятичную систему счисления с употреблением нуля, математики Ср. Азии и Бл. Востока применяли в больших науч. вычислениях по преимуществу шестидесятиричную систему (по-видимому, в связи с шестидесятиричным делением углов в астрономии).

В связи с астрономич. и геодезич. работами большое развитие получила тригонометрия. Аль-Баттани ввёл в употребление тригонометрич. функции синус, тангенс и котангенс, Абу-лъ-Вефа - все шесть тригонометрич. функций, он же выразил словесно алгебраич. зависимости между ними, вычислил таблицы синусов через 10' с точностью до 1/604 и таблицы тангенсов и установил теорему синусов для сферич. треугольников. Насирэддин Туей достиг известного завершения разработки сферич. тригонометрии, алъ-Каши дал систематич. изложение арифметики десятичных дробей, к-рые справедливо считал более доступными, чем шестидесятиричные. В связи с вопросами извлечения корней аль-Каши сформулировал словесно формулу бинома Ньютона, указал правило образования коэффициентов Сnmn-1mn-1m-1. В " Трактате об окружности"

(ок. 1427) аль-Каши, определяя периметры вписанного и описанного 3*228-угольников, нашёл я с семнадцатью десятичными знаками. В связи с построением обширных таблиц синусов аль-Каши дал весьма совершенный итерационный метод численного решения уравнений. Западная Европа до 16 в. 12-15 вв. являются для зап.-европ. М. по преимуществу периодом усвоения наследства древнего мира и Востока. Тем не менее уже в этот период, не приведший ещё к открытию особенно значит, новых математич. фактов, общий характер европ. математич. культуры отличается рядом существенных прогрессивных черт, обусловивших возможность стремит, развития М. в последующие века. Высокий уровень требований быстро богатеющей и политически независимой буржуазии итал, городов привёл к созданию и широкому распространению учебников, соединяющих практическое общее направление с большой обстоятельностью и научностью. Меньше чем через 100 лет после появления в 12 в. первых латинских переводов греч. и араб, математич. сочинений Леонардо Пизанский (Фибоначчи) выпускает в свет свои " Книгу об абаке" (1202) и " Практику геометрии" (1220), излагающие арифметику, коммерческую арифметику, алгебру и геометрию. Эти книги имели большой успех. К концу рассматриваемой эпохи (с изобретением книгопечатания) учебники получают ещё более широкое распространение. Основными центрами теоретич. научной мысли в это время становятся университеты. Прогресс алгебры как теоретич. дисциплины, а не только собрания практич. правил для решения задач, сказывается в ясном понимании природы иррациональных чисел как отношений несоизмеримых величин [англ, математик Т. Брадвардин (1-я пол. 14 в.) и Н. Орем (сер. 14 в.)] и особенно во введении дробных (Н. Орем), отрицательных и нулевых [франц. математик Н. Шюке (конец

15 в.)] показателей степеней. Здесь же возникают первые, предваряющие следующую эпоху идеи о бесконечно больших и бесконечно малых величинах. Широкий размах научных исследований этой эпохи нашёл отражение не только в многочисленных переводах и изданиях греч. и араб, авторов, но и в таких начинаниях, как составление обширных три-гонометрич. таблиц, вычисленных с точностью до седьмого знака Региомонтаном (И. Мюллером). Значительно совершенствуется математич. символика (см. Знаки математические). Развиваются научная критика и полемика. Поиски решения трудных задач, поощряемые обычаем публичных состязаний в их решении, приводят к первым доказательствам неразрешимости. Уже Леонардо Пизанский в соч. " Цветок" (около 1225), в котором собраны предложенные ему и блестяще решённые им задачи, доказал неразрешимость уравнения: х3+2х2 +10 x= 20 не только в рациональных числах, но и при помощи простейших квадратичных иррациональностей вида
[ris]

Западная Европа в 16 в. Этот век был первым веком превосходства Зап. Европы над древним миром и Востоком. Так было в астрономии (открытие Н. Коперника) и в механике (к концу этого столетия уже появляются первые исследования Г. Галилея), так в целом обстоит дело и в М., несмотря на то, что в нек-рых направлениях европ. наука ещё отстаёт от достижений среднеазиатских математиков 15 в. и что в действительности большие новые идеи, определившие дальнейшее развитие новой европ. М., возникают лишь в следующем, 17 в. В 16 же веке казалось, что новая эра в М. начинается с открытием алгебраич. решения уравнений третьей (С. Ферро, ок. 1515, и позднее и независимо Н. Тарталъей, ок. 1530; об истории этих открытий см. Кардана формула) и четвёртой (Л. Феррари, 1545) степеней, к-рое считалось в течение столетий неосуществимым. Дж. Кардана исследовал уравнения третьей степени, открыв т. н. неприводимый случай, в к-ром действительные корни уравнения выражаются комплексно. Это заставило Кардано, хотя и очень неуверенно, признать пользу вычислений с комплексными числами. Дальнейшее развитие алгебра получила у Ф. Виета - основателя настоящего алгебраич. буквенного исчисления (1591) (до него буквами обозначались лишь неизвестные). Учение о перспективе, развивавшееся в геометрии ещё ранее 16 в., излагается нем. художником А. Дюрером (1525). С. Стевин разработал (1585) правила арифметич. действий с десятичными дробями.

Россия до 18 в. Математич. образование в России находилось в 9-13 вв. на уровне наиболее культурных стран Вост. и Зап. Европы. Затем оно было надолго задержано монг. нашествием. В 15-16 вв. в связи с укреплением Рус. гос-ва и экономич. ростом страны значительно выросли потребности общества в математич. знаниях. В конце 16 в. и особенно в 17 в. появились многочисл. рукописные руководства по арифметике, геометрии, в к-рых излагались довольно обширные сведения, необходимые для практич. деятельности (торговли, налогового дела, артиллерийского дела, строительства и пр.).

В Др. Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на слав, алфавите (см. Славянские цифры). Славянская нумерация в русской математич. лит-ре встречается до нач. 18 в., но уже с конца 16 в. эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система.

Наиболее древнее известное нам математич. произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифмстико-хронологич. расчётам, к-рые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий (определения на каждый год дня наступления праздника пасхи), сводящуюся в своей математич. части к решению в целых числах неопределённых уравнений первой степени. Арифметич. рукописи конца 16-17 вв. содержат, помимо описания славянской и араб, нумерации, арифметич. операции с целыми положит, числами, а также подробное изложение правил действия с дробями, тройное правило и решение уравнений первой степени с одним неизвестным посредством правила ложного положения. Для целей практич. использования общих правил в рукописях рассматривалось много примеров реального содержания и излагался т. н. дощаный счёт - прототип русских счётов. Подобным же образом была построена и первая арифметич. часть знаменитой " Арифметики" Л. Ф. Магницкого (1703). В геометрич. рукописях, в большинстве своём преследовавших также практич. цели, содержалось изложение правил определения площадей фигур и объёмов тел, часто приближённых, использовались свойства подобных треугольников и теорема Пифагора.

3. Период создания математики переменных величин. С 17 в. начинается существенно новый период развития математики. " Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчислени е..." (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 573). Круг количественных отношений и пространственных форм, изучаемых теперь М., уже не исчерпывается числами, величинами и геометрич. фигурами. В основном это было обусловлено явным введением в М. идей движения и изменения (см. Переменные и постоянные величины). Уже в алгебре в скрытом виде содержится идея зависимости между величинами (значение суммы зависит от значений слагаемых и т. д.). Однако чтобы охватить количественные отношения в процессе их изменения, надо было самые зависимости между величинами сделать самостоятельным предметом изучения. Поэтому на первый план выдвигается понятие функции, играющее в дальнейшем такую же роль основного и самостоятельного предмета изучения, как ранее понятия величины или числа. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математич. анализа, вводящим в М. в явном виде идею бесконечного, к понятиям предела, производной, дифференциала и интеграла. Создаётся анализ бесконечно малых, в первую очередь в виде дифференциального исчисления и интегрального исчисления, позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. Основные законы механики и физики записываются в форме дифференциальных уравнений, и задача интегрирования этих уравнений выдвигается в качестве одной из важнейших задач М. Разыскание неизвестных функций, определённых другого рода условиями, составляет предмет ' вариационного исчисления. Таким образом, наряду с уравнениями, в к-рых неизвестными являются числа, появляются уравнения, в к-рых неизвестны и подлежат определению функции.

Предмет изучения геометрии также существенно расширяется с проникновением в геометрию идей движения и преобразования фигур. Геометрия начинает изучать движение и преобразования сами по себе. Напр., в проективной геометрии одним из осн. объектов изучения являются сами проективные преобразования плоскости или пространства. Впрочем, сознательное развитие этих идей относится лишь к концу 18 в. и нач. 19 в. Гораздо раньше, с созданием в 17 в. аналитической геометрии, принципиально изменилось отношение геометрии к остальной М.: был найден универсальный способ перевода вопросов геометрии на язык алгебры и анализа и решения их чисто алгебраич. и анали-тич. методами, а с другой стороны, открылась широкая возможность изображения (иллюстрирования) алгебраич. и аналитич. фактов геометрически, напр, при графич. изображении функциональных зависимостей (см. Координаты).

Алгебра 17 и 18 вв. в значительной мере посвящена следствиям, вытекающим из возможности изучать левую часть уравнения Р(х) = 0 как функцию переменного х. Этот подход к делу позволил изучить вопрос о числе действительных корней, дать методы их отделения и приближённого вычисления, в комплексной же области привёл франц. математика Ж. Д'Аламбера к не вполне строгому, но для математиков 18 в. достаточно убедительному доказательству " основной теоремы алгебры" о существовании у любого алгебраич. уравнения хотя бы одного корня. Достижения " чистой" алгебры, не нуждающейся в заимствованных из анализа понятиях о непрерывном изменении величин, в 17-18 вв. были тоже значительны (достаточно указать здесь на решение произвольных систем линейных уравнений при помощи определителей, разработку теории делимости многочленов, исключения неизвестных и т. д.), однако сознательное отделение собственно алгебраич. фактов и методов от фактов и методов математич. анализа типично лишь для более позднего времени (2-я пол. 19 в.- 20 в.). В 17-18 вв. алгебра в значит, мере воспринималась как первая глава анализа, в которой вместо исследования произвольных зависимостей между величинами и решения произвольных уравнений ограничиваются зависимостями и уравнениями алгебраическими.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.