Главная страница
Случайная страница
Разделы сайта
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Как продвинуть сайт на первые места?
Вы создали или только планируете создать свой сайт, но не знаете, как продвигать?
Продвижение сайта – это не просто процесс, а целый комплекс мероприятий,
направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
Ускорение продвижения
Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст,
она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней.
Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
Начать продвижение сайта
Сервис онлайн-записи на собственном Telegram-боте
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание,
но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
Для новых пользователей первый месяц бесплатно.
Чат-бот для мастеров и специалистов, который упрощает ведение записей:
— Сам записывает клиентов и напоминает им о визите;
— Персонализирует скидки, чаевые, кэшбэк и предоплаты;
— Увеличивает доходимость и помогает больше зарабатывать;
Начать пользоваться сервисом
Условие устойчивости линейного многошагового метода.
Будем полагать теперь, что для решения тестового уравнения используется многошаговый метод. В этом случае
.
Преобразуем это выражение следующим образом:
,
где .Введем подстановку
.
Тогда разностное уравнение приводится к виду
,
или
.
Каждый корень полиномиального уравнения
,
их всего для каждого фиксированного , порождает частное решение разностного уравнения многошагового метода. Так как разностное уравнение многошагового метода линейно и для него справедлив принцип суперпозиции, общее решение в предположении, что все корни различны, можно представить в виде
,
где – постоянные коэффициенты. Если полиномиальное уравнение содержит кратный корень кратности , то соответствующий член в общем решении будет таким:
.
Отсюда следует, что , если . Таким образом, многошаговый метод является численно устойчивым для тех значений , для которых корень полиномиального уравнения лежит внутри единичной окружности .
Множество всех значений , для которых многошаговый метод является численно устойчивым, называют областью устойчивости метода.
|