Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Условие устойчивости линейного многошагового метода.






    Будем полагать теперь, что для решения тестового уравнения используется многошаговый метод. В этом случае

    .

    Преобразуем это выражение следующим образом:

    ,

    где .Введем подстановку

    .

    Тогда разностное уравнение приводится к виду

    ,

    или

    .

    Каждый корень полиномиального уравнения

    ,

    их всего для каждого фиксированного , порождает частное решение разностного уравнения многошагового метода. Так как разностное уравнение многошагового метода линейно и для него справедлив принцип суперпозиции, общее решение в предположении, что все корни различны, можно представить в виде

    ,

    где – постоянные коэффициенты. Если полиномиальное уравнение содержит кратный корень кратности , то соответствующий член в общем решении будет таким:

    .

    Отсюда следует, что , если . Таким образом, многошаговый метод является численно устойчивым для тех значений , для которых корень полиномиального уравнения лежит внутри единичной окружности .

    Множество всех значений , для которых многошаговый метод является численно устойчивым, называют областью устойчивости метода.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.