Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Лекция 16. Атом водорода






    Для атома водорода и водородоподобных атомов потенциальная энергия: , где r расстояние между ядром и электроном. В сферической системе координат уравнение Шредингера:

    , (3.3)

    где оператор Лежандра. Ядро считается неподвижным. Чтобы учесть его движение, нужно заменить массу электрона на приведенную массу.

    Уравнение (3.3) решается по методу разделения переменных:

    . (3.3а)

    . (3.6)

    Решение уравнения (3.5) нам уже известно. Постоянная разделения , где орбитальное квантовое число. В уравнении (3.6) сумма электростатической и центробежной энергий играет роль эффективной потенциальной энергии (рис.3.1):

    . (3.7)

    Потенциальная энергия имеет «яму» с минимальным значением на расстоянии

    , (3.7a)

    где радиус первой боровской орбиты. Глубина «ямы»:

    , (3.7б)

    где энергия основного состояния атома водорода.

    Если энергия частицы положительна (), то ее движение инфинитно. Если энергия отрицательна (), то частица находится в потенциальной яме - ее движение финитно

    . (3.12)

    Это условие определяет собственные значения энергии водородоподобного атома:

    . (3.12а)

    . (3.13)

    Это – в точности формула Бора. Квантование энергии возникает в результате решения уравнения Шредингера как задачи на собственные значения с естественным граничным условием без каких-либо дополнительных постулатов.

    Число - радиальное квантовое число, главное квантовое число:

    . (3.13a)

    При фиксированном числе n орбитальное квантовое число принимает n значений от 0 до n – 1:

    . (3.14)

    Радиальная волновая функция (3.9) зависит от квантовых чисел . Удобнее пользоваться набором n, . Стационарные состояния водородоподобного атома описываются волновыми функциями (3.3а):

    . (3.15)

    Состояние водородоподобного атома характеризуется набором чисел . Однако значение энергии каждого состояния (3.13) определяется только главным квантовым числом. Ситуация, при которой различным волновым функциям отвечает одно и то же значение энергии, характерна для вырожденных состояний. Подсчитаем кратность вырождения уровней энергии водородоподобного атома. Кратность вырождения уровней - это количество различных волновых функций, отвечающих

    одному и тому же значению энергии. Для водородоподобногоатома кратность вырождения определяется суммой:

    .

    Каждый уровень энергии водородоподобного атома является – кратно вырожденным.

    Состояния электрона в атоме обозначают с помощью буквы, которая соответствует численному значению орбитального квантового числа, а также с помощью цифры, стоящей перед этой буквой и соответствующей значению главного квантового числа: 1 s; 2 s, 2 p; 3 s, 3 p, 3 d; 4 s, 4 p, 4 d, 4 f;... Диаграмма уровней энергии атома водорода (рис.3.2) - диаграмма Гротриана (1928).

    Состояние 1 s –основное состояние. Остальные состояния возбужденные. Некоторые волновые функции для водородоподобного атома:

    n = 1 – состояние 1 s:

    (3.17)

    n = 2 – состояние 2 s:

    состояние 2 p:

    (3.17а)

    Постоянная .

    Переходы между различными состояниями возможны при выполнении правил отбора: На изменение главного квантового числа n нет каких-либо ограничений.

    Квадрат модуля волновой функции (3.15) - плотность вероятности того, что электрон находится в элементе объема , где – элемент телесного угла:

    . (3.18)

    Распределения по углам и по радиусу - независимы. Вероятность углового распределения совпадает с вероятностью состояний ротатора. Распределение электронного заряда по радиусу:

    . (3.19)

    Условие нормировки . Величина - вероятность того, что электрон находится на расстоянии от r до r + dr от ядра атома. Графики функции для некоторых состояний изображены на рис.3.3.

    Функция в состояниях с максимальным значением орбитального квантового числа . Число . Из (3.11): . Так что . Плотность вероятностей в этих состояниях: . Это «одногорбая» функция, имеет максимум при , т.е. на расстояниях – радиусов боровских орбит. В состояниях 1 s, 2 p, 3 d, 4 f,... наиболее вероятно найти электрон на расстояниях, равных боровским радиусам.

           
       
     

     

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.