Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Применение катализа в химической и нефтеперерабатывающей промышленности






 

Катализ - это одна из наиболее динамично и стремительно развивающихся областей науки и техники. Непрерывно разрабатываются новые и совершенствуются существующие каталитические системы, предлагаются новые каталитические процессы, меняется их аппаратурное оформление, совершенствуются и появляются новые физико-химические методы исследования катализаторов. Большинство химических процессов, задействованных на предприятиях нефтехимического и нефтеперерабатывающего комплекса, являются каталитическими. Развитие катализа и каталитических технологий в значительной мере обуславливают конкурентную способность нефтехимической продукции на рынке. Поэтому остро стоит вопрос о необходимости подготовки высококвалифицированных специалистов в области катализа для нефтехимии.

Катализ - явление специфичное. Нет веществ, которые обладали бы каталитическими свойствами в общей форме. Для каждой реакции должен использоваться свой особый катализатор.

Применение катализа в химической промышленности. Каталитические процессы используются для получения водорода, служащего сырьем для синтеза аммиака и ряда других производств химической технологии. Конверсия метана. Наиболее дешевым источником водорода является природный газ. Первая стадия получения водорода включает взаимодействие метана с водяным паром при частичном добавлении кислорода или воздуха при температуре 800 – 1000°С (реакция 2.1). В качестве катализатора используется никель, нанесенный на термостойкие алюмооксидные носители (корунд - a-Al2O3).

СН4 + Н2О ⇄ 3Н2 + СО (2.1)

СО + Н2О ⇄ СО2 + Н2 (2.2)

В результате этой реакции наряду с водородом в значительном количестве образуется оксид углерода.

Конверсия СО. Взаимодействие оксида углерода с водяным паром осуществляют в две стадии при снижающемся температурном режиме с использованием оксидных катализаторов (реакция 2.2), при этом дополнительно образуется водород. На первой стадии применялся среднетемпературный (435-475°С) железохромовый катализатор (Fe3O4 с добавками Cr2O3); на второй – низкотемпературный (230-280°С) катализатор (смесь оксидов алюминия, меди, хрома и цинка). Конечное содержание оксида углерода, присутствие которого резко уменьшает активность железного катализаторов синтеза аммиака, может быть снижено до десятых долей процента.

Для удаления остатков СО необходимо было применять сложную промывку газовой смеси аммиачным раствором Сu2О под высоким давлением 120-320 атм и низкой температуре 5-20°С.

В практике промышленного производства очистку газовых выбросов от СО проводят методом абсорбции растворами Cu-аммиачных солей (формиатами и карбонатами меди), которые обладают способностью образовывать с СО комплексные соединения. Так как формиаты мало устойчивы, то предпочтение отдают карбонатным растворам.

Исходный карбонатно-аммиачный комплекс меди имеет следующий состав (кмоль/м3): Cu+ - 1, 0 – 1, 4; Cu2+ - 0, 08 – 0, 12; NH3 – 4, 0 – 6, 0; СО2 – 2, 4 – 2, 6.

Абсорбционной способностью по отношению к СО обладают соли одновалентной меди. Катионы Cu2+ участия в абсорбции, как правило, не принимают. Однако в растворе необходимо поддерживать концентрацию Cu2+ не менее 10 мас. % от содержания Cu+. Последнее позволяет предотвратить образование осадка элементарной меди, которая может забить трубопроводы и нарушить работу абсорбера. Наличие в растворе карбонатно-аммиачного комплекса меди Cu2+ смещает равновесие реакции (1) в сторону образования Cu+: Cu2+ + Cu ⇄ 2 Cu+ (1)

В растворе карбонатно-аммиачного комплекса меди, используемого для абсорбции СО, содержится [Cu(NH3)2]2СО3; [Cu(NH3)4]СО3; (NH4)2СО3; свободные NH3 и СО2.

Процесс абсорбции СО карбонатно-аммиачным комплексом меди протекает по реакции: [Cu(NH3)2] + + CO + NH3 ⇄ [Cu(NH3)3CO] + - DH (2)

Одновременно с СО поглощается и СО2 по уравнению:

2 NH3 + Н2О + СО2 ⇄ (NH4)2СО3 - DH1 (3)

Метанирование. В связи с разработкой нового активного никелевого катализатора сложная операция отмывки может быть заменена при 250-350°С более простым процессом превращения остатка оксида углерода в инертный для катализатора синтеза аммиака метан (реакция 2.3):

СО + 3Н2 ⇄ СН4 + Н2О (2.3)

 

Таким образом, разработка более активного катализатора позволила существенно упростить технологическую схему и повысить эффективность производства аммиака.

Применение катализа в нефтеперерабатывающей промышленности. Эффективность применения катализа оказалась столь значительной, что за несколько лет в нефтеперерабатывающей промышленности произошла подлинная техническая революция, позволившая на основе применения катализаторов резко повысить как выход, так и качество получаемых моторных топлив.

В настоящее время свыше 80% нефти перерабатывается с использованием каталитического процессов: крекинга, риформинга, изомеризации и гидрирования углеводородов, гидроочистки нефтяных фракций от серосодержащих соединений, гидрокрекинга. В таблице 2.1 приведены важнейшие современные каталитические процессы нефтепереработки.

Крекинг. Каталитический крекинг нефти или ее фракций является деструктивным процессом, осуществляемый при температурах 490-540°С на синтетических и природных алюмосиликатных катализаторах кислотной природы, для получения высококачественного бензина с октановым числом 98-92, значительного количества газов, содержащих предельные и непредельные углеведороды С34, керосино-газойлевых фракций, технического углерода и кокса.

Октановое число (О.ч.) – условный показатель детонационной стойкости легких (бензинов, керосинов) моторных топлив при сгорании в карбюраторных двигателях. Эталонное топливо – изооктан (О.ч. = 100), нормальный гептан (О.ч. =0). Октановое число бензина – это процентное (по объему) содержание изооктана в такой его смеси с н-гептаном, которая при стандартных условиях испытания на специальном одноцилиндровом двигателе детонирует также, как испытуемый бензин.

В последние годы широкое промышленное использование получили катализаторы на основе кристаллических синтетических цеолитов. Активность этих катализаторов, особенно содержащих смесь оксидов редкоземельных элементов (СеО2, La2O3, Ho2O3, Dy2O3 и других), значительно выше, чем аморфных алюмосиликатных катализаторов.

Применение катализаторов позволило не только увеличить в 500-4000 раз скорость образования углеводородов более низкой молекулярной массы из нафтенов, но и повысить выход ценных фракций по сравнению с термическим крекингом.

Каталитический крекинг является наиболее высокотоннажным промышленным каталитическим процессом. С его помощью в настоящее время перерабатывается свыше 300 млн. т нефти в год, что требует ежегодного расхода около 300 тыс. т катализаторов.

Риформинг. Каталитический риформинг осуществляют при температуре 470-520°С и давлении 0, 8-1, 5 МПа на Pt, Re- катализаторах, нанесенных на оксид алюминия, обработанный хлористым водородом для увеличения кислотных свойств. Риформингом называют способ переработки нефтепродуктов, преимущественно, бензиновых и лигроиновых фракций нефти (углеводороды С69 трех основных классов: парафиновые, нафтеновые и ароматические) с целью получения высокооктановых автомобильных бензинов, ароматических углеводородов (бензола, толуола, ксилола, этилбензола) и технического водорода. В процессе риформинга протекают реакции дегидрирования нафтенов в ароматические углеводороды, циклизации парафинов и олефинов и изомеризации пятичленных циклических углеводородов в шестичленные. В настоящее время каталитический риформинг используется для переработки более 200 млн. т нефти в год. Его применение позволило не только повысить качество моторного топлива, но и вырабатывать значительные количества ароматических углеводородов для химической промышленности. Побочными продуктами каталитического риформинга являются топливный газ, состоящий в основном из метана и этана, а также сжиженный газ – пропан-бутановая фракция

Гидроочистка нефтепродуктов. Ценным побочным продуктом каталитического риформинга является водород. Появление дешевого водорода позволило широко использовать каталитическую гидроочистку нефтепродуктов от серо-, азото- и кислородсодержащих соединений, с образованием легко удаляемых Н2S, NH3 и H2O, соответственно (реакции 2.4 – 2.7):

CS2 + 4H2 ⇄ 2H2S + CH4 (2.4)

RSH + H2 ⇄ H2S + RH (2.5)

COS + 4H2 ⇄ H2S + CH4 + H2O (2.6)

RNH + 3/2H2 ⇄ NH3 + RH (2.7)

Одновременно происходит гидрирование диенов, что повышает стабильность продукта. Для этой цели наибольшее распространение получили катализаторы, приготовляемые из оксидов кобальта (2–5 масс.%) и молибдена (10-19 масс.%) или оксидов никеля и молибдена, нанесенные на γ -оксид алюминия.

Гидроочистка позволяет получать до 250-300 тысяч тонн элементарной серы в год. Для этого реализуют процесс Клауса:

2H2S + 3O2 ⇄ 2SO2 + 2H2O (2.8)

2H2S + SO2 ⇄ 3S + 2H2O (2.9)

Часть H2S окисляется кислородом воздуха на γ -Al2O3 при 200-250°С (реакция 2.8); другая часть H2S взаимодействует с диоксидом серы с образованием серы (реакция 2.9).

Условия проведения гидроочистки зависят от свойств очищаемого сырья, но чаще всего лежат в пределах 330-410°С и 3-5 МПа. Гидроочистке подвергается ежегодно около 300 млн. т нефтепродуктов (бензиновые и керосиновые фракции, дизельное топливо, вакуумные дистилляты, парафины и масла). Реализация в нефтепереработке стадии гидроочистки позволила подготовить сырье для каталитического риформинга (бензины) и крекинга (вакуумные дистилляты), получить малосернистые осветительный керосин и топливо, повысить качество продуктов (парафины и масла), а также имеет значительный экологический эффект, так как снижается загрязнение атмосферы выхлопными газами при сжигании моторного топлива. Внедрение гидроочистки позволило использовать высокосернистые нефти для получения нефтепродуктов.

Гидрокрекинг. В последнее время значительное развитие получил процесс гидрокрекинга, при котором одновременно осуществляются реакции крекинга, изомеризации и гидроочистки. Гидрокрекинг – это каталитический процесс глубокого превращения сырья различного фракционного состава в присутствии водорода с целью получения светлых нефтепродуктов: бензина, реактивного и дизельного топлива, сжиженных газов С34. Применение полифункциональных катализаторов позволяет осуществлять этот процесс при 400-450°С, давлении около 5-15 МПа. В качестве катализаторов используют сульфид вольфрама, смешанные вольфрам-никелевые сульфидные катализаторы на носителях, кобальт-молибденовые катализаторы на оксиде алюминия, с добавками Ni, Pt, Pd и других металлов на аморфных или кристаллических цеолитах.

Таблица 2.1 – Современные каталитические процессы нефтепереработки

Процесс Катализатор Условия проведения процесса
1. Крекинг Цеолитсодержащие катализаторы с добавками редкоземельных элементов, Cr 470-520°С 0, 2-0, 3 МПа
2. Риформинг Платино-рениевые катализаторы на оксиде алюминия: Pt, Re, Ir, (Cl-, SO4-2)/γ -Al2O3 470-520°С 0, 8-1, 5 МПа
3. Гидроочистка Алюмокобальт-молибденовый, алюмоникель-молибденовый 330-410°С 3-5 МПа
4. Гидрокрекинг Цеолитсодержащие катализаторы с нанесенными соединениями Ni, Co, Mo и добавками Pt, Pd; WS2/Al2O3; (Сo-Mo) /γ -Al2O3 400-450°С 5-15 МПа
5. Изомеризация Pt, Pd (Cl-, F-)/γ -Al2O3; цеолиты 360-450°С 3, 0-3, 5 МПа

 

Изомеризация. Для улучшения качества к бензинам добавляют 10-15 масс.% изомеризата с высоким октановым числом. Изомеризат представляет собой смесь насыщенных алифатических (в молекулах отсутствуют циклы) углеводородов изостроения (более 65 масс.% 2-метилбутана; изогексаны), получаемую изомеризацией алканов (нормальных насыщенных парафинов). Сырьем для изомеризации служат легкая бензиновая фракция прямой перегонки нефти, выкипающая в пределах 62-85°С и содержащая в основном пентан и гексан, а также фракция (75-150°С), получаемая при каталитическом крекинге. Процессы каталитической изомеризации протекают в присутствии бифункциональных катализаторах: платиновых или палладиевых на различных кислотных носителях (γ -Al2O3, цеолит), промотированных галогеном (Cl, F). Изомеризация – это превращение органических веществ в соединения другого строения (структурная изомерия) или с иным расположением атомов или групп в пространстве (пространственная изомерия) без изменения состава и молекулярной массы.

Таким образом, каталитические процессы занимают ведущее положение в нефтепереработке. Благодаря катализу ценность продуктов, получаемых из нефти, удалось повысить в несколько раз.

Более перспективной возможностью каталитических методов в нефтепереработке является отказ от свойственного современным процессам глобального превращения всех сложных соединений, находящихся в нефтях. Так, все сернистые соединения подвергаются гидрогенолизу с выделением сероводорода. Между тем многие из них представляют значительную самостоятельную ценность. То же справедливо в отношении азотсодержащих, металлокомплексных и многих других соединений. Очень важно было бы выделять эти вещества или подвергать их индивидуальным каталитическим превращениям с получением ценных продуктов. Примером может служить получение серосодержащих экстрагентов типа сульфоксидов и сульфонов, образующихся при каталитическом окислении сернистых соединений, содержащихся в нефти и котельном топливе. Несомненно, что этим путем катализ позволит значительно повысить эффективность нефтепереработки.

 

Вопросы для самопроверки и контроля знаний

1. Какие химические реакции являются каталитическими в синтезе аммиака: от получения водорода и азота, очистки синтез-газа и получения NH3?

2. На каких катализаторах и при каких условиях протекает процесс конверсии метана?

3. Зачем необходимо очищать синтез-газ от СО и СО2?

4. На каких катализаторах и при каких условиях протекает процесс метанирования?

5. Что такое каталитический крекинг?

6. На каких катализаторах и при каких условиях протекает процесс крекинга?

7. Что такое каталитический риформинг?

8. На каких катализаторах и при каких условиях протекает процесс риформинга?

9. Зачем проводят гидроочистку нефтепродуктов?

10. На каких катализаторах и при каких условиях протекает процесс гидроочистки?

11. Какой процесс позволяет получать элементарную серу?

12. Зачем проводят гидрокрекинг?

13. На каких катализаторах и при каких условиях протекает процесс гидрокрекинга?

14. С какой целью проводят изомеризацию нефтепродуктов?

15. На каких катализаторах и при каких условиях протекает процесс изомеризации?

 

 

ЛЕКЦИЯ №3






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.