Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • кездейсоқ шамасы параметрі -ға тең көрсеткіштік кездейсоқ шама. кездейсоқ шамасының үлестірім тығыздығын табыңыз.






    1) 2)

     

    79. ξ кездейсоқ шамасының ү лестірім функциясы былайша анық талғ ан: ( ) η 2ξ +1 кездейсоқ шамасының ү лестірім тығ ыздығ ын табың ыз:

    80. , Mξ =? Dξ =?

    1) 5; 25 2) np; npq

    81..ξ кездейсоқ шамасының ү лестірім тығ ыздығ ы былайша берілген: C тұ рақ тысын табың ыз:

    1) 3! /2 2) 3

    82. ξ кездейсоқ шамасы [0, 1] аралығ ында бірқ алыпты ү лестірілген. η 2ξ +1 кездейсоқ шамасының ү лестірім тығ ыздығ ын табың ыз:

    1) 2) 0, 5,

    83. ξ [0, 1] аралығ ында бірқ алыпты ү лестірілген бірқ алыпты ү лестірілген кездейсоқ шама. η =lnξ кездейсоқ шамасының ү лестірім тығ ыздығ ын табың ыз:

    1) 2)

     

    84. ξ [0, 1] аралығ ында бірқ алыпты ү лестірілген бірқ алыпты ү лестірілген кездейсоқ шама. η =-lnξ кездейсоқ шамасының ү лестірім тығ ыздығ ын табың ыз:

    1) 2)

    85. ξ кездейсоқ шамасы [0, 1] аралығ ында бірқ алыпты ү лестірілген. η -ln(1-ξ) кездейсоқ шамасының ү лестірім тығ ыздығ ын табың ыз:

    1) 2)

    86. x параметрі l=1/2 болатын кө рсеткіштік кездейсоқ шама болса, онда h=2x+1 шамасының математикалық кү тімі Mh неге тең? 1) 5 2)25/5

    87. x параметрі l =1/2 болатын кө рсеткіштік кездейсоқ шама. Онда M x жә не D x шамалары неге тең? 1) Mx=2, Dx=4 2) Mx=1/l, Dx=1/l2

    88. ξ кездейсоқ шамасының ү лестірім заң ы былай анық талғ ан: Онда тұ рақ ты шама =с? 1)1 2)10/10

    89. кезейсоқ шамасының ү лестірім тығ ыздығ ы c -тұ рақ ты шамасы неге тең? 1)3 2)33/11

    90. болса, h=-2x+1 қ алай ү лестірілген?

    91. ξ 1, ξ 2 тә уелсіз N(0, 1) кездейсоқ шамалар. ξ =3 ξ 1 – 4 ξ 2 + 1 кездейсоқ шамасының ү лестірім тығ ыздығ ын табың ыз. 1) 2)

    92. ξ 1, ξ 2 тә уелсіз N(0, 1) кездейсоқ шамалар. ξ =3 ξ 1 – 4 ξ 2 кездейсоқ шамасының ү лестірім тығ ыздығ ын табың ыз. 1) 2)

    93. ξ 1, ξ 2 тә уелсіз N(0, 1) кездейсоқ шамалар. ξ =4ξ 1 – 3ξ 2+1 кездейсоқ шамасының ү лестірім тығ ыздығ ын табың ыз. 1) 2)

    94. ξ 1, ξ 2 кездейсоқ шамаларының бірлескен ү лестірім функциясы арқ ылы ық тималдығ ын қ ай формуламен табуғ а болады? 1) 2)

    95. ξ 1, ξ 2 тә уелсіз болса, онда міндетті тү рде . Кері тұ жырым қ андай кездейсоқ шамалар ү шін дұ рыс? 1) Гаустік 2)

    96. s2 - таң дамалық дисперсия, s12 - тү зетілген таң дамалық дисперсия. Онда (n - таң даманың кө лемі): 1)

    97. таң дамалық орта, . Онда: 1)

    ξ -2 -1      
    P 1/7 1/7 2/7 1/7 p

    98. p=? M|ξ |=? 1)p= , M|ξ |= 2)p= , M|ξ |=

    99.

    78.ξ -1      
    P 1/5 1/5 1/5 p

    Табу керек: p=? Mξ 2=? 1)p=1/5 Mξ 2=2

    2) p=0.2 Mξ 2=

    100. кездейсоқ шамасының ү лестірім тығ ыздығ ы болсын. Онда мынағ ан тең: 1) ;

    2)

     

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.