Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Взаимодействие радиоактивных излучений с окружающей средой
Взаимодействие заряженных частиц. К заряженным частицам относятся α - и β – частицы. α -частица представляет собой ядро гелия (4He2+), масса α -частицы составляет 4 а.е.м.(по меркам микромира это огромная величина), заряд - +2.. Масса электрона (позитрона) примерно в 7300 раз меньше массы α -частицы, а заряд β -частицы, равный по модулю заряду электрона, равен ±1. Энергия заряженной частицы – кинетическая энергия, которая пропорциональна массе частицы и квадрату скорости ее движения. Будучи электрически заряженными, частицы взаимодействуют с кулоновскими полями ядра и электронов атома вещества. Необходимо отметить, что ядро занимает ничтожно малый объем атома (примерно 10-12 части объема атома), поэтому вероятность взаимодействия заряженной частицы с кулоновским полем ядра невелика. В результате взаимодействия частицы вызывают ионизацию окружающей среды, т.е. образование положительных ионов и свободных электронов вследствие вырывания электронов из внешних оболочек атомов. При ионизации вещества происходит потеря части энергии (скорости) заряженной частицы в каждом акте взаимодействия. После некоторого числа взаимодействий энергия (скорость) заряженной частицы уменьшается практически до нуля и происходит ее нейтрализация путем присоединения электронов для α -частицы или присоединения электрона к иону для β -частицы. Таким образом, при каждом акте взаимодействия происходит замедление частицы, т.е. частица имеет отрицательное ускорение. Известно, что при движении заряженной частицы с ускорением, частица начинает излучать энергию, что приводит к потере энергии частицы. Следовательно, при взаимодействии заряженной частицы с веществом имеют место быть ионизационные и радиационные потери энергии. Радиационные потери пропорциональны квадрату ускорения. Учитывая, что ускорение a = F/M, где F – сила, действующая на частицу массой М, получим, что радиационные потери при рассеянии на кулоновском центре пропорциональны (Ze – заряд центра). Отсюда следует, что радиационные потери для α -частицы примерно в 108 раз меньше, чем для β -частицы (т.к. масса α -частицы примерно в 104 раз больше массы электрона). Для β -частицы радиационные потери пропорциональны EZ2, а ионизационные – Z, поэтому отношение радиационных потерь энергии Eр к ионизационным Еи оказывается пропорциональным EZ: где энергия β -частицы дана в Мэв. Следовательно, для основных породообразующих элементов (Z = 8 ÷ 20) при значениях энергии β -частицы, характерных для естественных радиоактивных элементов 0.1 ÷ 2 Мэв, Еи / Ер > 10. Таким образом, для заряженных частиц характерны ионизационные потери. Количественными характеристиками потерь энергии частицы служит величина удельных потерь энергии (dE/dx) (т.е. потери энергии на единицу длины пути частицы) и пробег частицы L в веществе (полный путь частицы в веществе). Линейный пробег в воздухе α -частицы в области энергий 4 Мэв < Eα < 9 Мэв, характерной для естественных радиоактивных элементов, приближенно выражается: и составляет от 2.5 до 9 см. Зная пробег α -частицы в воздухе, легко найти ее пробег в любом другом веществе. Например, пробег в алюминии RAL относительно пробега в воздухе RO можно записать так: где: ρ – плотность; А – атомный вес. Атомный вес воздуха (28% кислорода и 72% азота) равен 14.4, плотность воздуха 0.0013 г/см3, для алюминия: плотность 2.7 г/см3, А равняется 27. Подставляя эти значения, получаем, что пробег α -частицы в алюминии равен десяткам микрон. Т.к. масса α -частицы почти на 4 порядка больше массы электрона, то направление движения α -частицы при соударении с электронами практически не меняется.
β -частицы, ввиду малой массы электрона, при соударении сильно отклоняются от первоначального направления, и их траектория представляет ломанную линию. Поэтому полный максимальный пробег частицы по прямой от начала до конца (эффективный пробег Rm) гораздо меньше длины траектории по ломанной. Величина массового эффективного пробега моноэнергетических электронов (в г/см2) находят по формулам: Величина Rm есть массовая толщина такого слоя вещества, необходимая для полного поглощения электронов данной энергии. Однако из-за сложного характера траекторий пробег большинства электронов в веществе гораздо меньше Rm. Для сравнения, пробег β -частицы в воздухе составляет, в зависимости от энергии, от единиц до десятков метров. Удельная потеря энергии оценивается следующим выражением:
где: Ne – концентрация электронов в веществе; q – заряд частицы; v – скорость движения частицы; A – число Авогадро; δ – плотность вещества; М – атомная масса; Z – заряд ядра. Ионизирующее действие Ф α -частицы увеличивается по мере приближения их к концу пробега R, т.е. с уменьшением скорости. Зависимость ионизации, вызываемая α -частицей, зависит от длины пробега R0: где Ф – число пар ионов, образованных на пути между рассматриваемой точкой и концом пробега. Удельная ионизирующая способность β -частицы примерно на порядок ниже, чем у α -частицы.
|