Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формула Шеннона
Наиболее широкое распространение при определении среднего количества информации, которое содержится в сообщениях от источников самой разной природы, получил подход. К Шеннона. Рассмотрим следующую ситуацию. lim fi = pi, (i = 1, 2,..., k), где рi можно считать вероятностью сигнала. Предположим, получен сигнал i-го типа с вероятностью рi, содержащий – log pi единиц информации. В рассматриваемом отрезке i-й сигнал встретится примерно Npi раз (будем считать, что N достаточно велико), и общая информация, доставленная сигналами этого типа, будет равна произведению Npi log рi. То же относится к сигналам любого другого типа, поэтому полное количество информации, доставленное отрезком из Nсигналов, будет примерно равно
Чтобы определить среднее количество информации, приходящееся на один сигнал, т.е. удельную информативность источника, нужно это число разделить на N. При неограниченном росте приблизительное равенство перейдет в точное. В результате будет получено асимптотическое соотношение – формула Шеннона
В последнее время она стала не менее распространенной, чем знаменитая формула Эйнштейна Е = mc2. Оказалось, что формула, предложенная Хартли, представляет собой частный случай более общей формулы Шеннона. Если в формуле Шеннона принять, что
Знак минус в формуле Шеннона не означает, что количество информации в сообщении – отрицательная величина. Объясняется это тем, что вероятность р, согласно определению, меньше единицы, но больше нуля. Так как логарифм числа, меньшего единицы, т.е. log pi – величина отрицательная, то произведение вероятности на логарифм числа будет положительным. Кроме этой формулы, Шенноном была предложена абстрактная схема связи, состоящая из пяти элементов (источника информации, передатчика, линии связи, приемника и адресата), и сформулированы теоремы о пропускной способности, помехоустойчивости, кодировании и т.д. В результате развития теории информации и ее приложений идеи Шеннона быстро распространяли свое влияние на самые различные области знаний. Было замечено, что формула Шеннона очень похожа на используемую в физике формулу энтропии, выведенную Больцманом. Энтропия обозначает степень неупорядоченности статистических форм движения молекул. Энтропия максимальна при равновероятном распределении параметров движения молекул (направлении, скорости и пространственном положении). Значение энтропии уменьшается, если движение молекул упорядочить. По мере увеличения упорядоченности движения энтропия стремится к нулю (например, когда возможно только одно значение и направление скорости). При составлении какого-либо сообщения (текста) с помощью энтропии можно характеризовать степень неупорядоченности движения (чередования) символов. Текст с максимальной энтропией – это текст с равновероятным распределением всех букв алфавита, т.е. с бессмысленным чередованием букв, например: ЙХЗЦЗЦЩУЩУШК ШГЕНЕЭФЖЫЫДВЛВЛОАРАПАЯЕЯЮЧБ СБСЬМ. Если при составлении текста учтена реальная вероятность букв, то в получаемых таким образом «фразах» будет наблюдаться определенная упорядоченность движения букв, регламентируемая частотой их появления: ЕЫТ ЦИЯЬА ОКРВ ОДНТ ЬЧЕ МЛОЦК ЗЬЯ ЕНВ ТША. Причиной такой упорядоченности в данном случае является информация о статистических закономерностях текстов. В осмысленных текстах упорядоченность, естественно, еще выше. Так, в фразе ПРИШЛ... ВЕСНА мы имеем еще больше информации о движении (чередовании) букв. Таким образом, от текста к тексту увеличиваются упорядоченность и информация, которой мы располагаем о тексте, а энтропия (мера неупорядоченности) уменьшается. Используя различие формул количества информации Шеннона и энтропии Больцмана (разные знаки), Л. Бриллюэн охарактеризовал информацию как отрицательную энтропию, или негэнтропию. Так как энтропия является мерой неупорядоченности, то информация может быть определена как мера упорядоченности материальных систем. Трудно переоценить значение идей теории информации в развитии самых разнообразных научных областей. Однако, по мнению К. Шеннона, все нерешенные проблемы не могут быть решены при помощи таких магических слов, как «информация», «энтропия», «избыточность».
|