Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Дальность распространения звука в воде






На большие расстояния звуковая энергия распространяется только вдоль пологих лучей, которые на всем пути не касаются дна океана. В этом случае ограничением, накладываемым средой на дальность распространения звука, является поглощение его в морской воде. Основной механизм поглощения связан с релаксационными процессами, сопровождающими нарушение акустической волной термодинамического равновесия между ионами и молекулами растворенных в воде солей. Следует отметить, что главная роль в поглощении в широком диапазоне звуковых частот принадлежит серномагниевой соли MgSO4, хотя в процентном отношении ее содержание в морской воде совсем невелико - почти в 10 раз меньше, чем, например, каменной соли NаС1, которая тем не менее не играет сколько-нибудь заметной роли в поглощении звука.

Поглощение в морской воде, вообще говоря, тем больше, чем выше частота звука. На частотах от 3-5 до по крайней мере 100 кГц, где доминирует указанный выше механизм, поглощение пропорционально частоте в степени примерно 3/2. На более низких частотах включается новый механизм поглощения (возможно, он связан с наличием в воде солей бора), который становится особенно заметным в диапазоне сотен герц; здесь уровень поглощения аномально высок и существенно медленнее падает с уменьшением частоты.

Чтобы более наглядно представить себе количественные характеристики поглощения в морской воде, заметим, что за счет этого эффекта звук с частотой 100 Гц ослабляется в 10 раз на пути в 10 тыс. км, а с частотой 10 кГц - на расстоянии только в 10 км (рисунок 2). Таким образом, только низкочастотные звуковые волны могут быть использованы для дальней подводной связи, для дальнего обнаружения подводных препятствий и т.п [4].

Рисунок 2 – Расстояния, на которых звуки разных частот затухают в 10 раз при распространении в морской воде.

В области слышимых звуков для диапазона частот 20-2000 Гц дальность распространения под водой звуков средней интенсивности достигает 15-20 км, а в области ультразвука – 3-5 км.

Если исходить из величин затухания звука, наблюдаемых в лабораторных условиях в малых объёмах воды, то можно было бы ожидать значительно больших дальностей. Однако в естественных условиях, кроме затухания, обусловленного свойствами самой воды (т. н. вязкого затухания), сказываются ещё его рассеяние и поглощение различными неоднородностями среды.

Рефракция звука, или искривление пути звукового луча, вызывается неоднородностью свойств воды, главным образом по вертикали, вследствие трёх основных причин: изменения гидростатического давления с глубиной, изменения солёности и изменения температуры вследствие неодинакового прогрева массы воды солнечными лучами. В результате совокупного действия этих причин скорость распространения звука, составляющая около 1450 м/сек для пресной воды и около 1500 м/сек для морской, изменяется с глубиной, причём закон изменения зависит от времени года, времени дня, глубины водоёма и ряда др. причин. Звуковые лучи, вышедшие из источника под некоторым углом к горизонту, изгибаются, причём направление изгиба зависит от распределения скоростей звука в среде. Летом, когда верхние слои теплее нижних, лучи изгибаются книзу и в большинстве своём отражаются от дна, теряя при этом значительную долю своей энергии. Наоборот, зимой, когда нижние слои воды сохраняют свою температуру, между тем как верхние слои охлаждаются, лучи изгибаются кверху и претерпевают многократные отражения от поверхности воды, при которых теряется значительно меньше энергии. Поэтому зимой дальность распространения звука больше, чем летом. Вследствие рефракции образуются т. н. мёртвые зоны, т. е. области, расположенные недалеко от источника, в которых слышимость отсутствует.

Наличие рефракции, однако, может приводить к увеличению дальности распространения звука — явлению сверхдальнего распространения звуков под водой. На некоторой глубине под поверхностью воды находится слой, в котором звук распространяется с наименьшей скоростью; выше этой глубины скорость звука увеличивается из-за повышения температуры, а ниже — вследствие увеличения гидростатического давления с глубиной. Этот слой представляет собой своеобразный подводный звуковой канал. Луч, отклонившийся от оси канала вверх или вниз, вследствие рефракции всегда стремится попасть в него обратно. Если поместить источник и приёмник звука в этом слое, то даже звуки средней интенсивности (например, взрывы небольших зарядов в 1—2 кг) могут быть зарегистрированы на расстояниях в сотни и тысячи км. Существенное увеличение дальности распространения звука при наличии подводного звукового канала может наблюдаться при расположении источника и приёмника звука не обязательно вблизи оси канала, а, например, у поверхности. В этом случае лучи, рефрагируя книзу, заходят в глубоководные слои, где они отклоняются кверху и выходят снова к поверхности на расстоянии в несколько десятков км от источника. Далее картина распространения лучей повторяется и в результате образуется последовательность т. н. вторичных освещенных зон, которые обычно прослеживаются до расстояний в несколько сотен км.

 

На распространение звуков высокой частоты, в частности ультразвуков, когда длины волн очень малы, оказывают влияние мелкие неоднородности, обычно имеющиеся в естественных водоёмах: микроорганизмы, пузырьки газов и т.д. Эти неоднородности действуют двояким образом: они поглощают и рассеивают энергию звуковых волн. В результате с повышением частоты звуковых колебаний дальность их распространения сокращается. Особенно сильно этот эффект заметен в поверхностном слое воды, где больше всего неоднородностей. Рассеяние звука неоднородностями, а также неровностями поверхности воды и дна вызывает явление подводной реверберации, сопровождающей посылку звукового импульса: звуковые волны, отражаясь от совокупности неоднородностей и сливаясь, дают затягивание звукового импульса, продолжающееся после его окончания, подобно реверберации, наблюдающейся в закрытых помещениях. Подводная реверберация — довольно значительная помеха для ряда практических применений гидроакустики, в частности для гидролокации.

Пределы дальности распространения подводных звуков лимитируются ещё и т.н. собственными шумами моря, имеющими двоякое происхождение. Часть шумов возникает от ударов волн на поверхности воды, от морского прибоя, от шума перекатываемой гальки и т.п. Другая часть связана с морской фауной; сюда относятся звуки, производимые рыбами и др. морскими животными [5].

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.