Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Задачи 21—40






Для атомов элементов, порядковые номера которых указаны в табл.1 укажите состав ядер (число протонов и нейтронов), составьте электронные формулы атомов. Укажите валентные электроны, рас­пределите их по квантовым ячейкам в стационарном и возбуждён­ном состояниях, определите значения спиновой валентности. К ка­кому электронному семейству принадлежит каждый элемент?

Т а б л и ц а 1

Номер Порядковые задачи номера элементов Номер Порядковые задачи номера элементов
21, 41 33, 38 22, 42 17, 56 23, 43 20, 35 24, 44 15, 52 25, 45 19, 53 26, 46 20, 51 27, 47 22, 32 28, 48 34, 42 29, 49 21, 31 30, 50 25, 35 31, 51 39, 49 32, 52 27, 37 33, 53 16, 55 34, 54 24, 34 35, 55 23, 50 36, 56 14, 48 37, 57 15, 47 38, 58 25, 53 39, 59 40, 50 40, 60 41, 51

 

 

Тема 3. Периодическая система
Д. И. Менделеева и химические свойства элементов

Естественной классификацией элементов по электронным конфи­гурациям их атомов является периодическая система элементов Менделеева. Причина периодичности свойств элементов заключается в периодической повторяемости сходных электронных конфигура­ций.

В периодах (горизонтальных строках таблицы) свойства элементов изменяются в связи с закономерным изменением электронных структур их атомов.

В группах (вертикальных строках таблицы) свойства элементов сходны благодаря аналогии в электронном строении внешнего ва­лентного уровня.

Номер периода определяет номер внешнего энергетического уровня в электронных формулах элементов. Количество элементов в каждом периоде соответствует минимальной ёмкости застраиваю­щихся энергетических подуровней.

Номер группы отвечает числу валентных электронов в атоме элемента. Кроме первого, каждый период начинается с двух s-эле­ментов и заканчивается шестью р-элементами. В больших периодах между этими семействами располагаются десять d-элементов (4....6 периоды). В 6 периоде к ним добавляется четырнадцать f-элемен­тов, 7 период не завершён.

Указанные закономерности позволяют составить электронную формулу элемента. Например, элемент тантал находится в 6 пе­риоде, V группе, побочной подгруппе. Это говорит о том, что в атоме этого элемента шесть энергетических уровней, пять валент­ных электронов. Перед танталом в 6 периоде стоят два s-элемента и два d-элемента. Сам тантал - третий по счёту d-элемент. Следо­вательно, его валентные электроны имеют конфигурацию 5d36s2. Предыдущие энергетические уровни застроены полностью. Полная электронная формула этого элемента имеет вид:

Та 1s22s22p63s23p63d104s24p64d104f145s25p65d36s2.

В периодической зависимости от зарядов ядер атомов находится валентность (степень окисления), атомные и ионные радиусы, энер­гия ионизации, энергия сродства к электрону, электроотрицатель­ность и другие свойства.

В простейшей трактовке валентности как степени окисления ато­мов её отождествляют с числом электронов, отдаваемых или при­обретаемых атомами в процессе взаимодействия.

Высшую степень окисления атом приобретает, отдав все свои ва­лентные электроны, поэтому её величина соответствует номеру группы, в которой находится данный элемент. Так, высшая степень окисления азота — +5 (V группа элементов), серы — +6 (VI группа элементов).

Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении электронов, необхо­димых ему для приобретения устойчивой восьмиэлектронной обо­лочки (октета электронов). Отсюда низшую степень окисления можно рассчитать по разности между 8 и номером группы. Напри­мер, для азота низшая степень окисления равна -3, для серы -2. Следует учесть, что металлы не проявляют отрицательных степеней окисления, для них минимальным значением этой величины явля­ется 0.

Значение высшей и низшей степеней окисления атомов элементов позволяет составлять формулы их соединений: высших оксидов, гидроксидов, солей, водородных соединений. При составлении фор­мул следует учитывать требование электронейтральности. Степени окисления кислорода, как правило, -2, водорода — +1.

Общая формула оксидов — соединений элемента с кислородом — Э+mxО-2y, водородных соединений — Э-mН+1m, гидроксидов — ос­нований Э+m(ОН)m. Простейшие формулы кислородсодержащих кислот выражаются общими формулами:

НЭ+7О4, Н2Э+6О4,

Н3Э+5О4 НЭ+5О3, Н4Э+4О4 Н2Э+4О3

орто мета орто мета

 

Энергия ионизации, энергия сродства к электрону, электроотрица­тельность являются мерами проявления элементами металлических и неметаллических свойств. Металлические (восстановительные) свой­ства определяются способностью атомов элементов к отдаче элек­тронов, неметаллические (окислительные) — тенденцией к при­соеди­нению электронов.

Металлические свойства наиболее характерны для элементов, в атомах которых на внешнем энергетическом уровне находится не­большое количество электронов: от одного до трёх. Неметалличе­ские свойства, в первую очередь, проявляют элементы, в атомах которых на внешнем уровне от четырёх до семи электронов.

В периоде периодической системы металлические свойства эле­ментов убывают с ростом порядкового номера; неметаллические свойства, напротив, возрастают в том же направлении. Это связано с закономерным ростом числа валентных электронов.

В группе металлические свойства возрастают с ростом порядко­вого номера, а неметаллические убывают, что связано с увеличе­нием радиуса атома с ростом порядкового номера элемента, удалён­ностью внешних электронов от ядра и ослаблением сил притяжения между электронами и ядром.

Большинство элементов периодической системы проявляют как металлические, так и неметаллические свойства. Вклад тех или дру­гих определяется спецификой электронной структуры атома. Коли­чественно этот вклад можно охарактеризовать с помощью величины электроотрицательности атома, представляющей собой полусумму энергии ионизации и энергии сродства к электрону. Электроотрица­тельность возрастает в периоде с ростом порядкового номера и убывает в группе с ростом порядкового номера.

Свойства соединений элементов можно рассматривать с двух то­чек зрения: как кислотно-основные и окислительно-восстано-витель­ные. Типичные металлы образуют оксиды и гидроксиды основного характера, типичные неметаллы — кислотные оксиды и кислоты. Кислотно-основной характер остальных элементов, в первую оче­редь, это относится к d-элементам, зависит от степени окисления их атомов: с ростом степени окисления основной характер соедине­ний сменяется амфотерным и далее переходит в кислотный. На­пример, хром в степени окисления +2 образует оксид CrO и гид­роксид Cr(OH)2, проявляющие основные свойства. Соединения хрома +3 — Cr2O3, Cr(OH)3 — амфотерны, а оксид и гидроксид хрома в степени окисления +6 носят кислотный характер (CrO3, Н2СrO4 и H2Cr2O7).

 

 

Задачи 41—60

Охарактеризуйте свойства элементов, порядковые номера которых указаны в табл. 1, исходя из их положения в периодической системе элементов Менделеева. Является ли каждый из них металлом или неметаллом, окислителем или восстановителем? Ка­ковы высшая и низшая степени окисления их атомов? Составьте формулы оксидов и гидроксидов, отвечающих их высшей степени окисления? Какими кислотно-основными свойствами обладают эти соединения? Приведите уравнения соответствующих реакций. Обра­зуют ли данные элементы водородные соединения? Сравните свой­ства соединений данного элемента со свойствами аналогичных со­единений элементов той же подгруппы периодической системы.

 

Тема 4. Химическая связь

 

Теоретические основы

Химическая связь возникает при взаимодействии атомов и приво­дит к образованию многоатомной системы — молекулы, молекуляр­ного иона, кристалла. Причиной (движущей силой) возникновения химической связи является уменьшение потенциальной энергии при пе­реходе от изолированных атомов к устойчивой многоатомной системе.

Мерой прочности химической связи является её энергия, вели­чина которой определяется количеством энергии, выделившейся при образовании вещества из отдельных атомов. Например, энергия связи Н¾ Н в молекуле водорода равна 435 кДж/моль. Это значит, что при образовании 1 моля газообразного водорода по уравнению

Н + Н = Н2 + 435 кДж/моль

выделяется 435 кДж теплоты. Такое же количество энергии должно быть затрачено на распад 1 моля Н2 до атомарного состояния (энергия диссоциации).

Химическая связь характеризуется также длиной, под которой понимают расстояние между ядрами химически связанных атомов. Так, длина химической связи Н¾ О в молекуле воды Н2О равна 0.096 нм (1 нм = 1· 10-9 м).

Химическая связь возникает благодаря взаимодействию электромагнитных полей, создаваемых электронами и ядрами атомов, уча­ствующих в образовании молекулы или кристалла.

Современная теория химической связи базируется на квантово-механической модели строения атома. В ней можно выделить два метода: метод валентных связей (ВС) и метод молекулярных орби­талей (МО).

В основе метода МО лежат представления об орбитальном строении молекул. Задачей этого метода является характеристика энергетических параметров электронов в молекуле, выходными дан­ными в таком случае является энергетическая диаграмма соответст­вующих уровней.

Охарактеризовать молекулу методам ВС — это означает предста­вить графически распределение электронной плотности в молекуле. Ниже кратко излагаются основные представления этого метода в применении к ковалентной химической связи.

Ковалентная химическая связь образуется парой электронов с противоположно направленными спинами, для чего каждый атом предоставляет один неспаренный электрон, называемый валентным. Эта пара электронов принадлежит одновременно обоим взаимодей­ствующим атомам, что означает повышение электронной плотности в пространстве между ядрами (центрами) химически связанных ато­мов. Поэтому ковалентная химическая связь является двухэлектрон­ной и двухцентровой. Процесс «спаривания» электронов при обра­зовании, например, молекулы водорода может быть изображён сле­дующей схемой:

 

Н ­ ­

¾ ® Н2

       
 
   
 


Н ¯ ¯

 

По Льюису указанный механизм наглядно представляют в виде электронной схемы молекулы, где электрон изображают точками. Для молекулы водорода такая схема имеет вид:

Н· + ·Н ¾ ® Н: Н

В графической формуле молекул пара точек заменяется валент­ным штрихом, соответствующим одной химической связи: Н¾ Н.

Атом хлора имеет на наружном уровне 7 электронов:

Cl 3s23p5, из которых один является неспаренным:

           
     


Cl ­¯ ­¯ ­¯ ­

3 s 3 p 3 d

Отсюда получаем следующую электронную схему молекулы хлора Сl2 :: +: ¾ ®: : : или Сl¾ Cl

Ковалентную связь, образованную посредством одной общей электронной пары, называют ординарной и изображают в структур­ных формулах одним валентным штрихом. Если же связь образуется за счёт двух или трёх общих электронных пар, она называется двойной или тройной, соответственно.

Кратные ковалентные связи изображают в структурных формулах двумя или тремя валентными штрихами. Так, атом азота имеет три неспаренных электрона:

 

 

N ­¯ ­ ­ ­

2s 2p

поэтому молекула N2 образуется в результате обобщения трёх элек­тронных пар (возникает тройная ковалентная связь):

+ ¾ ® или N ≡ N

В молекуле оксида углерода (IV) двойные ковалентные связи:

: : + ∙ ∙ +: : ¾ ® :: ::

или О=С=О

Молекула СО2 образована атомом углерода в возбуждённом со­стоянии: С* 2s12p3.

Таким образом, валентность химического элемента (как способ­ность его атомов образовывать определённое число химических свя­зей) зависит от количества неспаренных электронов его атома в основном или возбуждённом состояниях.

Одним из свойств ковалентной химической связи является её полярность. Если электроотрицательность (способность к смещению электронной плотности) атомов, образующих молекулу, одинакова или очень близка, то общая электронная пара располагается строго симметрично по отношению к обоим ядрам. Такая ковалентная связь называется неполярной. Неполярная ковалентная связь осуще­ствляется, например, в молекулах Н2, F2, O2, N2, в любых других гомоядерных молекулах, образованных атомами одного и того же элемента.

Если же электроотрицательность атомов различна, электронная пара смещается в сторону более электроотрицательного атома. При этом возникают частичные (дробные) заряды: отрицательный на бо­лее электроотрицательном атоме и положительный на атоме с меньшей электроотрицательностью. В молекуле образуются два по­люса. Подобные ковалентные связи называют полярными. Напри­мер, в молекулах НCl, H2O, NH3 и т.д.

В случае очень большой разницы в электроотрицательностях (численно более 2), поляризация связи приобретает необратимый ха­рактер. Это происходит тогда, когда соединение образуют, с одной стороны, атом, легко отдающий свои валентные электроны, имею­щий низкий потенциал ионизации (прежде всего, это щелочные и щёлочно-земельные металлы), а с другой стороны, атом, проявляю­щий тенденцию к присоединению электронов, обладающий высоким сродством к электрону (галогены, кислород, азот и, отчасти, сера и фосфор). При этом электрон полностью переходит от первого атома ко второму. Атомы превращаются в заряженные частицы — ионы. Атом, отдавший один электрон, приобретает заряд +1 и на­зывается катионом. Атом, приобретший дополнительный электрон, получает заряд -1 и называется анионом. Электростатическое при­тяжение, возникшее между разноименно заряженными ионами, на­зывают ионной химической связью. Примерами ионных соединений являются галогениды и оксиды щелочных металлов: LiCl, K2O, CsI и т.п.

Повышение электронной плотности в результате образования общей электронной пары (ковалентная химическая связь) можно представить с помощью области перекрывания атомных орбиталей, занятых неспаренными валентными электронами, образующих дан­ную молекулу. Перекрывание орбиталей происходит в том направ­лении, которое обеспечивает образование максимальной области пе­рекрывания. По этой причине, а также в связи с тем, что орби­тали имеют определённую геометрическую форму, ковалентная связь обладает свойством направленности.

Перекрывание орбиталей может осуществляться разными спосо­бами. Например, при образовании s-связи перекрывание происходит вдоль линии, соединяющей ядра (рис. 1):

 

       
 
   
 


 

s s s p p p

(молекула Н2) (молекула НCl) (молекула Сl2)

 

Рис. 1. Перекрывание орбиталей s-способом.

 

При боковом перекрывании орбиталей образуется p-связь. В этом случае возникают две общие области: над и под плоскостью, в ко­торой лежат ядра. На схемах p-связь принято изображать условно (рис. 2, а и б).

 

а) б)

       
   
 
 

 


Рис. 2. Перекрывание орбиталей p-способом.

 

s- и p-способами перекрывания орбиталей харак­теризу-ется не ионная, а ковалентная связь. Причём, s-способ при­водит к образованию более прочной ковалентной связи, поскольку в этом случае реализуется большая степень перекрывания.

Для того чтобы дать характеристику определённой молекулы ме­тодом ВС, требуется:

— по величинам электроотрицательности определить тип химиче­ской связи (ковалентная неполярная, ковалентная полярная или ионная) в соединении;

— написать электронные формулы атомов, принимающих участие в образовании молекулы;

— выбрать валентные электроны; распределить их по квантовым ячейкам; выбрать неспаренные электроны;

— в случае, если количество неспаренных электронов меньше численного значения валентности многовалентного атома, перевести последний в возбуждённое состояние;

— установить, на каких орбиталях находятся эти неспаренные электроны;

— если связь ковалентная, нарисовать перекрывание этих орбита­лей в молекуле;

если связь ионная, указать, какие атомы и сколько электро­нов отдают и принимают, указать величину зарядов ионов в соеди­нении.

Пример: молекула сероводорода (H2S).

Электроотрицательность: серы 2.58, водорода 2.10. Связь между атомами Н и S — ковалентная полярная. Обобществленные элек­тронные пары смещены в молекуле сероводорода от атомов водо­рода (на которых появляется частичный положительный заряд) к атому серы (возникает частичный отрицательный заряд). Элек­тронная формула водорода: Н 1s1; серы: S 1s22s22p63s23p4. Ва­лентные электроны водорода: 1s1; серы: 3s23p4. Распределение электронов по квантовым ячейкам:

Н ­ S ­¯ ­¯ ­ ­

1s 3s 3p

Неспаренные электроны серы занимают две 3р-орбитали. По­скольку спиновая валентность атома серы соответствует ва­лентности, обусловливающей формульный состав молекулы серово­дорода, атом серы образует две химические связи в основном со­стоянии.

По причине взаимной перпендикулярности двух р-орбиталей од­ного подуровня, схема перекрывания 3р-орбиталей серы и s-орбиталей двух атомов водорода имеет вид, представленный на рис. 3, а. Соединив ядра атомов водорода и серы прямыми линиями, полу­чаем геометрическую фигуру, дающую пред-ставление о форме мо­лекулы: молекула сероводорода имеет угловое строение (рис. 3, б).

а) S б) S

 
 

 


H H

i i

 

Рис. 3. Угловое строение молекулы сероводорода:

а) схема перекрывания орбиталей;

б) форма молекулы.

В возбуждённых состояниях некоторых многовалентных атомов неспаренные электроны занимают разные энергетические уровни, то есть характеризуются орбиталями различной формы и энергии. Од­нако согласно экспериментальным данным, химические связи, обра­зуются такими атомами, эквивалентны (равноценны). В подобных случаях прибегают к представлениям о гибридизации орбиталей. Этот процесс заключается в том, что из разных по форме и энер­гии орбиталей образуются одинаковые, так называемые гибридные орбитали. При этом тип гибридизации обусловливает определённую форму молекулы.

Типы гибридизации для s- и р-орбиталей приведены в табл. 2.

 

 

Т а б л и ц а 2

Исходные орбитали Тип гибридизации   Геометрия молекулы
Одна s и одна р     Одна s и две р     Одна s и три р   Sp     sp2   sp3   180° Линейная     Тригональная 120° (плоскотреу- гольная)   109° 28¢ Тетраэдри- ческая    

Пример: молекула тетрабромметана (СBr4).

Электронные формулы: С 1s22s22p2

Br 1s22s22p63s23p63d104s24p5.

Валентные электроны: С 2s22p2; Br 4s24p5.

Распределение по квантовым ячейкам (основное состояние):

               
       


С ­¯ ­ ­ Br ­¯ ­¯ ­¯ ­

2s 2p 4s 4p

Поскольку валентность углерода в CBr 4 равна 4, атом углерода вступает во взаимодействие с атомом брома не в основном, а в возбуждённом состоянии:

С * ­ ­ ­ ­

 

Из одной s- и трёх р-орбиталей 2s 2p

атома углерода (по числу исход­ных) образуются четыре гибридных sp 3 -орбитали. Такому типу гибридизации соот-ветствует тетраэдрическая форма молекулы четырёх-бромистого углерода (рис.4):

Br

       
   
 


109° 28¢

 
 


С

. Br

Br

 

Br

 

 

Рис. 4. Перекрывание орбиталей в молекуле СBr4 и

геометрия этой молекулы.

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.