Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Направление выпуклости графика функции. Точки перегиба






Определение 2.7: Кривая называется выпуклой вниз в промежутке , если она лежит выше касательной в любой точке этого промежутка.

Определение 2.8: Кривая называется выпуклой вверх в промежутке , если она лежит ниже касательной в любой точке этого промежутка.

yy

 

 

xx

Определение 2.9: Промежутки, в которых график функции обращен выпуклостью вверх или вниз, называются промежутками выпуклости графика функции.

Выпуклость вниз или вверх кривой, являющейся графиком функции , характеризуется знаком ее второй производной: если в некотором промежутке , то кривая выпукла вниз на этом промежутке; если же , то кривая выпукла вверх на этом промежутке.

Определение 2.10: Точка графика функции , разделяющая промежутки выпуклости противоположных направлений этого графика, называется точкой перегиба.

 
 


y

 

x

Точками перегиба могут служить только критические точки II рода, т.е. точки, принадлежащие области определения функции , в которых вторая производная обращается в нуль или терпит разрыв.

Правило нахождения точек перегиба графика функции

1. Найти вторую производную .

2. Найти критические точки II рода функции , т.е. точки, в которой обращается в нуль или терпит разрыв.

3. Исследовать знак второй производной впромежутка, на которые найденные критические точки делят область определения функции . Если при этом критическая точка разделяет промежутки выпуклости противоположных направлений, то является абсциссой точки перегиба графика функции.

4. Вычислить значения функции в точках перегиба.

 

Пример 1: Найти промежутки выпуклости и точки перегиба следующей кривой: .

Решение: Находим , .

Найдем критические точки по второй производной, решив уравнение

.

.

 

 
+   -
точка перегиба

 

Ответ: Функция выпукла вверх при ;

функция выпукла вниз при ;

точка перегиба .

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.