Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Направление выпуклости графика функции. Точки перегиба
Определение 2.7: Кривая называется выпуклой вниз в промежутке , если она лежит выше касательной в любой точке этого промежутка. Определение 2.8: Кривая называется выпуклой вверх в промежутке , если она лежит ниже касательной в любой точке этого промежутка. yy
xx Определение 2.9: Промежутки, в которых график функции обращен выпуклостью вверх или вниз, называются промежутками выпуклости графика функции. Выпуклость вниз или вверх кривой, являющейся графиком функции , характеризуется знаком ее второй производной: если в некотором промежутке , то кривая выпукла вниз на этом промежутке; если же , то кривая выпукла вверх на этом промежутке. Определение 2.10: Точка графика функции , разделяющая промежутки выпуклости противоположных направлений этого графика, называется точкой перегиба. y
x Точками перегиба могут служить только критические точки II рода, т.е. точки, принадлежащие области определения функции , в которых вторая производная обращается в нуль или терпит разрыв. Правило нахождения точек перегиба графика функции 1. Найти вторую производную . 2. Найти критические точки II рода функции , т.е. точки, в которой обращается в нуль или терпит разрыв. 3. Исследовать знак второй производной впромежутка, на которые найденные критические точки делят область определения функции . Если при этом критическая точка разделяет промежутки выпуклости противоположных направлений, то является абсциссой точки перегиба графика функции. 4. Вычислить значения функции в точках перегиба.
Пример 1: Найти промежутки выпуклости и точки перегиба следующей кривой: . Решение: Находим , . Найдем критические точки по второй производной, решив уравнение . .
Ответ: Функция выпукла вверх при ; функция выпукла вниз при ; точка перегиба .
|