Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Косвенный метод МНК 46. двухшаговый метод МНК.






Как уже отмечалось, разработана масса методов эвристического анализа систем эконометрических уравнений. Они предназначены для решения тех или иных проблем, возникающих при попытках найти численные решения систем уравнений.

Одна из проблем связана с наличием априорных ограничений на оцениваемые параметры. Например, доход домохозяйства может быть потрачен либо на потребление, либо на сбережение. Значит, сумма долей этих двух видов трат априори равна 1. А в системе эконометрических уравнений эти доли могут участвовать независимо. Возникает мысль оценить их методом наименьших квадратов, не обращая внимания на априорное ограничение, а потом подкорректировать. Такой подход называют косвенным методом наименьших квадратов.

Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. В то же время трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и погрешности каждого уравнения, а затем построить оценку для ковариационной матрицы погрешностей. После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов.

Алгоритм косвенного метода наименьших квадратов:

· Структурная модель преобразовывается в приведенную форму модели.

· Для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты.

· Коэффициенты приведенной формы модели трансформируются в параметры структурной формы модели.

Алгоритм двухшагового метода наименьших квадратов:

· Определяется приведенная форма модели, и находятся на ее основе оценки теоретических значений эндогенных переменных.

· Определяются структурные коэффициенты модели по данным теоретических (расчетных) значений эндогенных переменных. Косвенный МНК.

Рассмотрим приведенную форму системы , в которой переменные -не мультиколлинеарны. роцедура статистического оценивания структурных параметров i-го уравнения: На 1-м этапе оцениваем с помощью обычного МНК все параметры приведенной формы. На 2-м этапе используются соотношения связывающие структурные параметры i-го уравнения системы с параметрами приведенной формы. В случае точной идентифицируемости i-го уравнения структурной формы его параметры и однозначно определяются из системы по значениям . Подставив в эти соотношения вместо их оценки и решив систему уравнений относительно и , мы получим состоятельные оценки и структурных параметров i-го уравнения системы.

В случае неидентифицируемости анализируемого уравнения структурной формы число взаимно независимых связей между , и будет меньше общего числа неизвестных. Поэтому без дополнительной информации нельзя определить значения структурных коэффициентов и .

Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. Двухшаговый метод наименьших квадратов (ДМНК) использует следующую центральную идею: на основе приведенной формы модели получают для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Затем они подставляются вместо фактических значений и применяют обычный МНК к структурной форме сверхидентифицируемого уравнения. В свою очередь, сверхидентифицируемая структурная модель может быть двух типов: либо все уравнения системы сверхидентифицируемы, либо же система содержит наряду со сверхидентифицируемыми и точно идентифицируемые уравнения. В первом случае, если все уравнения системы сверхидентифицируемые, для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.