Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Условия равновесия плоской системы сил






    Теорема. Для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы главный вектор и главный момент этой системы были равны нулю:

    ,

    .

    Данная теорема имеет три формы.

    Первая форма уравнений равновесия.

    Теорема. Для равновесия произвольной плоской системы необходимо и достаточно, чтобы сумма проекций всех сил на каждую из двух выбранных координатных осей равнялась нулю и чтобы сумма моментов всех сил системы относительно любой точки плоскости также равнялась нулю.

    Т.к. , а , ,

    то уравнения равновесия будут иметь вид:

    .

    Вторая форма уравнений равновесия.

    Теорема. Для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы сумма моментов всех сил относительно двух произвольных точек равнялась нулю и чтобы сумма проекций всех сил на произвольную ось, не перпендикулярную прямой, соединяющей эти точки, равнялась нулю:

    .

    Третья форма уравнений равновесия.

    Теорема. Для равновесия произвольной плоскости системы сил необходимо и достаточно, чтобы суммы моментов всех сил системы относительно каждого из трёх произвольных, но не лежащих на одной прямой центров равнялись нулю.

    Доказательство:

    а) необходимость: это условие очевидно, т. к. если есть равновесие, то сумма моментов всех сил относительно всякого центра равна нулю;

    б) достаточность: возьмём три точки A, B, C, не лежащие на одной прямой. Пусть относительно них выполняются равенства:

    .

    Докажем, что система сил находится в равновесии.

    Докажем обратное, что условия выполнены, а система сил не находится в равновесии.

    Выберем точку A за центр приведения и приведем все силы к центру: получим равнодействующую , приложенную к точке A. Т.к. главный момент , то пары не будет.

    Если окажется, что R = 0, то теорема доказана ().

    Пусть , тогда линия действия должна пройти через точку B, чтобы выполнялось условие , а по теореме Вариньона, . Следовательно, , что может быть при только в случае, если проходит через точку B. Таким образом, проходит через точку A и точку B. По условию, . Т.к. , линия действия должна пройти через точку C, что невозможно, следовательно, R = 0.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.