Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Как продвинуть сайт на первые места?
    Вы создали или только планируете создать свой сайт, но не знаете, как продвигать? Продвижение сайта – это не просто процесс, а целый комплекс мероприятий, направленных на увеличение его посещаемости и повышение его позиций в поисковых системах.
    Ускорение продвижения
    Если вам трудно попасть на первые места в поиске самостоятельно, попробуйте технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Если ни один запрос у вас не продвинется в Топ10 за месяц, то в SeoHammer за бустер вернут деньги.
    Начать продвижение сайта
  • Алгебраический критерий устойчивости Рауса-Гурвица






    Критерий устойчивости (условие наличия в характеристическом уравнении САР только отрицательных корней, или комплексно-сопряженных корней с отрицательной вещественной частью) был сформулирован швейцарским математиком А. Гурвицем в 1895 году. Критерий связывает расположение корней характеристического полинома

     

     

    с определенными условиями, накладываемыми на его коэффициенты .

    Для применения критерия необходимо из коэффициентов полинома составить матрицу Гурвица в следующем виде

     

    .

     

    Матрица Гурвица составляется следующим образом. Диагональ матрицы заполняется по-порядку коэффициентами полинома начиная с . Первая строка матрицы Гурвица заполняется коэффициентами полинома, имеющими нечетные индексы, вторая строка – коэффициентами, имеющими четные индексы ( относится к коэффициентам, имеющим четные индексы), третья строка опять заполняется коэффициентами полинома, имеющими нечетные индексы и т.д. Свободные места в матрице заполняются нулями.

    САР будет устойчива (в характеристическом полиноме будут все корни отрицательные, или с отрицательной вещественной частью), если положительны все диагональные миноры, полученные из матрицы Гурвица

    ; ; ; ; .

    Примеры.

    1). Для характеристического полинома 2-й степени условие А.Стодолы , , является необходимым и достаточным.

    2). Для характеристического полинома 3-й степени необходимыми и достаточными условиями устойчивости являются:

    а) , , , (условие А.Стодолы),

    б) (получено по матрице А.Гурвица).

    3). Для характеристического полинома 4-й степени необходимыми и достаточными условиями устойчивости являются:

    а) , , , , (условие А.Стодолы),

    б) и (получено по матрице А.Гурвица).

    4). Для характеристического полинома 5-й степени необходимыми и достаточными условиями устойчивости являются:

    а) , , , , , (условие А.Стодолы),

    б) , ,

    (получено по матрице А.Гурвица).






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.