Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Тема 7.3 Метрические характеристики графа.






     

    Пусть дан граф:

     

     
     
    А3

     


    Как от вершины А1 дойти до А5?

    Существуют следующие пути:

    1. < A1, A4>, < A4, A5>

    2. < A1, A2>, < A2, A4>, < A4, A5>

    3. < A1, A3>, < A3, A4>, < A4, A5>

    4. < A1, A4>, < A4, A2>, < A2, A1>, < A1, A3>, < A3, A4>, < A4, A5>

    5. < A1, A4>, < A4, A2>, < A2, A1>, < A1, A4>, < A4, A5> - не является путем, т.к. ребро < A1, A4> встречается дважды.

    Путем от вершина А1 до вершины Аn называется такая последовательность ребер, ведущая от А1 до Аn, что любые два соседних ребра имеют общую вершину и ни одного ребра не встречается дважды.

    Путь, в котором начальные и конечные вершины совпадают называют циклом.

    Путь от вершины А1 до Аn называется простым, если он не проходит ни через одну из вершин графа более одного раза.

    Цикл называется простым, если он не проходит ни через одну из вершин графа более одного раза.

    Длиной пути (цикла) называется количество ребер его составляющих.

    Дан граф. Найти пути от А1 до А6 и определить их длину

    1. < A1, A6>, d=1

    2. < A1, A2>, < A2, A6>, d=2

    3. < A1, A2>, < A2, A5>, < A5, A4>, < A4, A3>, < A3, A2>, < A2, A6>, d=6

    4. < A1, A2>, < A2, A3>, < A3, A4>, < A4, A5>, < A5, A2>, < A2, A6>, d=6

     

    Расстоянием от вершины А до вершины В называется длина наименьшего пути, если не существует пути от А до В, то считают что расстояние равно бесконечности.

     

     

    S(A1, A6)=1

    S(A1, A7)=∞

    Вершины А и В называются связными, если не существует пути связывающего их.

     

     

    Вершины:

    1. A и D – несвязные

    2. A и Е – несвязные

    3. А и В – связные

    4. А и С – связные

     






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.