Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Этап 5. Проверка качества подобранной модели ⇐ ПредыдущаяСтр 2 из 2
Качество преобразованной модели можно проверить стандартными средствами Excel, также представленными в полученной таблице. По критерию F= 80, 6118, регрессия больше параметра «Значимость» F = 0, 00028592. Регрессионная статистика (рис. 6) показывает высокую вероятность верности предположения о наличии степенной зависимости пары «Площадь/Ставка». Множественный коэффициент корреляции R весьма высок - связь очень сильная. В этом можно удостовериться, сопоставив 0, 97 с табличными данными (табл. 2) [5, с. 81]. Таблица 2. Сопоставление абсолютной величины коэффициента корреляции и характера связи
Стандартная ошибка показывает отклонение фактических значений результирующего показателя от теоретической расчетной величины на удалении σ при распределении Гаусса, или (грубо) какой разброс данных присущ выборке. Теснота связи параметров определяется по параметру R-квадрат (коэффициент детерминации), а для малых выборок, к которым относится и наш случай (7 наблюдений), целесообразно использовать нормированный R-квадрат (коэффициент детерминации, скорректированный на величину выборки). Эти данные свидетельствуют о тесноте связи имеющихся параметров и чем ближе его значение к единице, тем лучше модель описывает исходный ряд данных, т. е. из двух «хороших» моделей «победит» та, у которой нормированный R-квадрат выше. Полученную модель можно считать достаточно достоверной.
|