Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Тема 1.12 Локсодромия и ортодромия.






Используя навигационные морские карты, судоводители прокладывают на них путь в виде прямой линии. Из условия построения карты, такой прямой путь на карте не будет кратчайшим на местности. Путь (прямая), проложенный на карте в Меркаторской проекции называется локсодромией (кривой бег). Кратчайший же путь между двумя точками на земной поверхности эллипсоида является сложной кривой, называемой геодезической линией. На поверхности сферы (шара) кратчайшее расстояние между двумя точками измеряется по дуге большого круга, т.е. круга, образованного пересечением плоскости, проходящей через центр сферы и заданные точки, со сферической поверхностью. Такая дуга в навигации называется ортодромией.

При анализе уравнения ортодромии можно сделать следующие выводы:

1. при расположении точек на одном меридиане ортодромия совпадает с меридианом этих точек;

2. ортодромия пересекает меридианы под разными углами;

3. при расположении точек по экватору ортодромия совпадает с экватором.

С появлением на море магнитных компасов стало удобным плавать на линии постоянного курса, что геометрические исследования в этой области. Кривую на поверхности Земли, пересекающую все меридианы под одним и тем же углом называют, как уже говорилось локсодромией. Эта кривая в математике известна как логарифмическая спираль, на навигационной карте она прямая линия, пересекающая меридианы под одним и тем же углом.

Рис. 1.23 Локсодромия и ортодромия. Разность углов, под которыми ортодромия пересекает меридианы двух точек, называется сближением (схождением) меридианов. γ = А2 – А1.

Угол схождения меридианов рассчитывается по приближенной формуле:

γ = 2arc tg [tg() Sin jср]

Основные свойства локсодромии:

  1. Если курс равен 180 или 360, то локсодромия совпадает с меридианом и ортодромией К=0. tgK = 0. l2 - l1 = 0.. l2 = l1)
  2. Если курс равен 90 или 270, то локсодромия совпадает с параллелью или экватором, т.е. образует малый или большой круг на поверхности Земли.
  3. При любых других курсах локсодромия спиралеобразно стремится к полюсу, никогда его не достигая.

Принимая Землю за шар, можно определить отношение длины экватора и параллели в какой - либо произвольной широте j.

Из треугольника ОАС (Рис.1.24) определяем отношение радиусов экватора (R) и параллели (r). r = R Cosj. Отсюда длина любой параллели будет равна 2pr = 2pRCos j. Отрезок параллели между двумя какими-либо меридианами равен отрезку экватора между теми же меридианами, умноженному на косинус широты этой параллели.  

Рис. 1.24
1.12.1 Меридиональные части. Разность меридиональных частей.

При решении многих задач судовождения часто приходится рассчитывать расстояние по меридиану от экватора до любой заданной параллели или между параллелями. Пользоваться для этой цели РШ не всегда удобно, а иногда и не желательно из – за недостаточной точности получаемого результата. Поэтому в расчетах, требующих повышенной точности, чаще пользуются меридиональными частями.

Меридиональная часть (МЧ) – это расстояние на меркаторской проекции от экватора до параллели с заданной широтой φ при масштабе на экваторе, равном единице.

для навигации МЧ удобнее всего выражать через 1′ дуги экватора, т.е. в экваториальных милях. в МТ – 75 составлена табл. 26, в которой приведены значения МЧ для широт от 00 до 89059′ через интервал в 1′ широты. Для нахождения промежуточных значений МЧ на каждую десятую долю минуты широты достаточно проинтерполировать их ближайшие табличные значения.

Разность меридиональных частей (РМЧ) – это расстояние по меридиану между двумя параллелями, выраженное в экваториальных милях. Для расчета РМЧ необходимо по табл.26 выбрать МЧ для каждой параллели φ и произвести вычитание:

РМЧ = МЧ2 – МЧ1

На поверхности Земного шара 1′ дуги меридиана (1 м. миля) величина постоянная, на меркаторской проекции 1 м.миля изображается различными по длине отрезками в зависимости от широты, т.е. величина переменная. При удалении от экватора линейная величина увеличивается, по мере приближения к экватору – все более уменьшается и на экваторе становится равной экваториальной миле. Поэтому, измеряя расстояние на меркаторской карте, следует на вертикальной рамке карты откладывать меркаторские мили в том месте, которое соответствует широте измеряемого расстояния. В связи с этим с достаточной точностью на такой карте можно снять лишь расстояния, не превышающие нескольких десятков миль.

 

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.