Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Двоїстий симплекс-метод






    Розглянемо метод знаходження опорних планів, в якому використовується поняття двоїстості. Ми знаємо, що двоїстою задачею до задачі:

    або у векторно-матричній формі:

    є задача:

    або у векторно-матричній формі:

    де АТ- матриця, транспонована до А;

    (с, х), (b, y) - скалярні добутки відповідних векторів.

    Якщо пряму задачу привести до канонічного виду і заповнити симплекс-таблицю, то ми бачимо, що стовпчики прямої задачі стануть рядками двоїстої, і навпаки. Тому нема потреби окремо розв’язувати вихідну задачу, а окремо - двоїсту, оскільки розв’язки обох можна знайти за одними й тими ж симплекс-таблицями, пам’ятаючи, що невідомим однієї задачі відповідають стовпчики, а невідомим другої - рядки.

    Спочатку розглянемо, як можна використати поняття двоїстості для зведення прямої задачі до канонічної, причому основною задачею тут є зведення системи обмежень до канонічної форми, оскільки базисних невідомих в оптимізуючій формі завжди можна позбутися, виразивши їх через вільні з системи обмежень і підставивши в цільову функцію. З цієї простої причини ми не будемо звертати увагу на рядок оптимізуючої форми до тих пір, доки не отримаємо опорного плану.

    Нехай в нас є задача, в базисі якої деякі плани від’ємні. Тоді ті базисні невідомі, що мають від’ємні плани, повинні бути виключені з базису.

    Припустимо, що невідома хk має від’ємний план (). Розглянемо k -тий рядок. Якщо в ньому всі члени додатні (за винятком ), то двоїста задача, а разом з нею і вихідна не мають розв’язку через необмеженість форми.

    В іншому випадку виділяємо стовпчики, в яких числа k- горядка від’ємні. Для кожного з виділених стовпчиків складаємо відношення елементів стовпця «План» до елементів виділених стовпців () за принципом: додатні до додатних, від’ємні до від’ємних, і вибираємо найменші відношення, які позначимо через , а числа нульового рядка відповідних стовпчиків через .

    До базису вводимо вільну невідому, для якої (при знаходженні максимуму цільової функції):






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.