Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Решение игры в смешанных стратегиях.




 

Задания для практических занятий.

 

№24. Решить графически игру, заданную платежной матрицей: .

Ответ: - смешанные стратегии игрока 1; - смешанные стратегии игрока 2; - цена игры.

 

№25. Решить графически игру, заданную платежной матрицей: .

Ответ: - смешанные стратегии игрока 1; - смешанные стратегии игрока 2; - цена игры.

 

№26. Решить графически игру, заданную платежной матрицей: .

Ответ: - смешанные стратегии игрока 1; - смешанные стратегии игрока 2; - цена игры.

 

№27. Решить графически игру, заданную платежной матрицей: .

Ответ: - смешанные стратегии игрока 1; - смешанные стратегии игрока 2; - цена игры.

 

№28. Решить графически игру, заданную платежной матрицей: .

Ответ: - смешанные стратегии игрока 1; - смешанные стратегии игрока 2; - цена игры.

 

№29. Решить графически игру, заданную платежной матрицей: .

Ответ: - смешанные стратегии игрока 1; - смешанные стратегии игрока 2; - цена игры.

 

№30. Решить графически игру, заданную платежной матрицей: .

Ответ: - смешанные стратегии игрока 1; - смешанные стратегии игрока 2; - цена игры.

 

№31. Игра состоит в следующем. Имеются две карты: туз и двойка. Игрок А наугад вынимает одну из них; В не видит, какую карту он вынул. Если А вынул туза, он заявляет: «у меня туз», и требует у противника 1 рубль. Если А вынул двойку, то он может либо А1) сказать «у меня туз» и потребовать у противника 1 рубль, либо А2) признаться, что у него двойка, и уплатить противнику 1 рубль. Противник, если ему добровольно платят 1 рубль, может только принять его. Если же у него потребуют рубль, то он может либо В1) поверить игроку А, что у него туз, и отдать ему 1 рубль, либо В2) потребовать проверки с тем, чтобы убедиться, верно ли утверждение А. Если в результате проверки окажется, что у А действительно туз, В должен уплатить А 2 рубля. Если же окажется, что А обманывает и у него двойка, игрок А уплачивает игроку В 2 рубля. Требуется проанализировать игру и найти оптимальную стратегию каждого из игроков.

Ответ:

А В В1 (верить) В2 (не верить)
А1 (обманывать)
А2 (не обманывать) 0,5

Решения игры в чистых стратегиях нет. - смешанные стратегии игрока А; - смешанные стратегии игрока В; - цена игры.

 

№32. Сторона А посылает в район расположения противника В два бомбардировщика I и II; I летит спереди, II – сзади. Один из бомбардировщиков – заранее неизвестно какой – должен нести бомбу, другой выполняет функцию сопровождения. В районе противника бомбардировщики подвергаются нападению истребителя стороны В. Бомбардировщики вооружены пушками различной скорострельности. Если истребитель атакует задний бомбардировщик II, то по нему ведут огонь пушки только этого бомбардировщика; если же он атакует передний бомбардировщик, то по нему ведут огонь пушки обоих бомбардировщиков. Вероятность поражения истребителя в первом случае 0,3, во втором 0,7. Если истребитель не сбит оборонительным огнем бомбардировщиков, то он поражает выбранную им цель с вероятностью 0,6. Задача бомбардировщика – донести бомбу до цели; задача истребителя – воспрепятствовать этому, т.е. сбить бомбардировщик-носитель. Требуется выбрать оптимальные стратегии сторон: для стороны А - какой бомбардировщик сделать носителем; для стороны В - какой бомбардировщик атаковать?



Ответ:

А В В1 (атаковать бомбард. I) В2 (атаковать бомбард. II)
А1 (носитель – бомбард. I) 0,82
А2 (носитель – бомбард. II) 0,58

Решения игры в чистых стратегиях нет. - смешанные стратегии игрока А; - смешанные стратегии игрока В; - цена игры.

 

№33. Спортивный клуб А располагает тремя вариантами состава команды А1, А2, А3. Клуб В – также тремя вариантами В1, В2, В3. Подавая заявку для участия в соревновании, ни один из клубов не знает, какой состав изберет противник. Вероятности выигрыша клуба А при различных вариантах составов команд, примерно известные из опыта прошлых встреч, заданы матрицей:

А В B1 B2 B3
A1 0,8 0,2 0,4
A2 0,4 0,5 0,6
A3 0,1 0,7 0,3

Найти, с какой частотой клубы должны выставлять каждый из составов во встречах друг с другом, чтобы добиться наибольшего в среднем числа побед.



Ответ: - смешанные стратегии клуба А; - смешанные стратегии клуба В; - цена игры.

 

№34. Найти решение в смешанных стратегиях, предварительно убедившись, что решения в чистых стратегиях нет, для игры, заданной платежной матрицей: .

Ответ: - смешанные стратегии игрока А; - смешанные стратегии игрока В; - цена игры.

 

Задания для самостоятельного решения.

 

№35. Решить графически игру, заданную платежной матрицей: .

 

№36. Решить графически игру, заданную платежной матрицей: .

 

№37. Решить графически игру, заданную платежной матрицей: .

 

№38. Решить графически игру, заданную платежной матрицей: .

 

№39. Найти решение в смешанных стратегиях, предварительно убедившись, что решения в чистых стратегиях нет, для игры, заданной платежной матрицей: .

 

№40. Найти решение в смешанных стратегиях, предварительно убедившись, что решения в чистых стратегиях нет, для игры, заданной платежной матрицей: .

 

№41. Найти решение в смешанных стратегиях, предварительно убедившись, что решения в чистых стратегиях нет, для игры, заданной платежной матрицей: .

 

№42. Найти решение в смешанных стратегиях, предварительно убедившись, что решения в чистых стратегиях нет, для игры, заданной платежной матрицей: .

 

№43. Найти решение в смешанных стратегиях, предварительно убедившись, что решения в чистых стратегиях нет, для игры, заданной платежной матрицей: .

 


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.02 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал