Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Преобразователи частоты






При конструировании устройств электропитания для аппарату­ры автоматики и связи возникает необходимость преобразования тока одной частоты в ток другой частоты, с высокими энергети­ческими показателями. Это преобразование может быть выполнено различными устройствами. В схеме (см. рисунок 6.1) переменный ток с исходной частотой f1 выпрямляется обычным выпрямителем. Выпрямленным напряже­нием питается инвертор, вырабатывающий переменное напряжение требуемой частоты f2. Для регулировки выходного напряжения можно использовать управляемые выпрямители, а для регулировки частоты-схемы управления частотой инвертора. Таким образом преобразователи частоты этого типа представляют собой совокуп­ность обычных выпрямителей и инверторов.

Для питания рельсовых цепей, на участках электрифицирован­ных железных дорог с электротягой переменного тока промышлен­ной частоты (50 Гц), а также с электротягой постоянного тока, используют параметрические преобразователи частоты. Принцип параметрического преобразования частоты основан на том, что принудительное изменение какого-либо параметра колебательного контура (L.или С) вызывает в нем колебания с частотой, в опреде­ленное число раз отличающейся от той, с которой изменяется параметр. Если потери в контуре будут компенсироваться за счет внешнего источника энергии, то эти колебания будут незатухающи­ми. Схема контура (рисунок 6.9, а) состоит из дросселя L, конденсатора С, резистора Rи источника тока Е. Если емкость конденсатора С периодически изменять по косинусоидальному закону, то ток в контуре будет изменяться по синусоидальному закону частотой, в 2 раза меньшей. Проще изменять индуктивность дросселя, изменяя подмагничивание его сердечника.

Преобразователи частоты (рисунок 6.10, а) выполнены на двух П-образных сердечниках. На крайних стержнях размещены обмотки подмагничивания Фп1 и Фп2, которые соединены так, чтобы созда­ваемые в средних стержнях потоки Фп1 и Фп2 были направлены встречно. На средних стержнях сердечников размещена контурная обмотка wK, индуктивность которой совместно с емкостью конден­сатора С образует колебательный контур с резонансной частотой 25 Гц. Обмотки wП1 и wП2, подключены к сети переменного тока через диод VD, который обеспечивает однополупериодное выпрям­ление. Если бы обмотки обладали только активным сопротивлением, то кривая выпрямленного тока повторяла бы форму выпрям­ленного напряжения (рисунок 6.10, 6). Наличие индуктивности искажает форму тока. Ток подмагничивания iп проходит через обмотки в течение большего времени, чем длительность одного полупериода напряжения в сети. Ток подмагничивания iП (рисунок 6.10, в) содержит только первую гармонику с амплитудой I т и постоянную состав­ляющую I0. Эта же кривая в соответствующем масштабе характе­ризует изменение магнитных потоков Фп1 и Фп2 и магнитной индукции Вп1, Вп2 в сердечниках. При увеличении магнитной индук­ции увеличивается степень насыщения сердечников и уменьшается их магнитная проницаемость μ (рисунок 6.10, г). Следовательно, индук­тивность контурной обмотки будет изменяться по тому же закону с частотой сети fс = 1 с. Правую и левую половины преобразователя невозможно выполнить совершенно одинаковыми. Поэтому один из магнитных потоков Фп1 или Фп2 будет преобладать. В контурную обмотку из сети поступит энергия.

 

Рис. 6.9. Схема контура (а) и зависимости емкости конденсатора и тока в контуре от времени (б)

 

 

 

Как только в обмотке wK, начнет проходить ток, в сердечниках появятся потоки Фя1 и Фж2, которые будут направлены в одном стержне согласно с потоком подмагничивания, в другом - встречно. При этом симметрия состояния насыщения сердечников наруша­ется, и в контурную обмотку из сети начнут поступать импульсы энергии. Для того чтобы в контуре могли существовать неза­тухающие колебания, необходимо, чтобы энергия, запасаемая за счет индуктивности обмотки wK и емкости конденсатора СК, была бы равна энергии, расходуемой на питание GR и на потери в элементах преобразователя G, т.е.

.

При уменьшении индуктивности контурной обмотки LK напряже­ние на конденсаторе С будет возрастать (рисунок 6.10, д). Период изменения напряжения в контуре Тк в 2 раза больше, чем в сети переменного тока Тс. Следовательно, частота тока в нагрузке будет в 2 раза ниже частоты в сети.

Отличительной особенностью преобразователей этого типа яв­ляются их хорошие стабилизирующие свойства. Они устойчиво работают при значительных изменениях напряжения на входе, сохраняя неизменным напряжение переменного тока с частотой 25 Гц на выходе. Они не нуждаются в защите от коротких замыка­ний или перегрузок. Если ток нагрузки преобразователя превышает значение, определяемое его расчетной мощностью, то преобразова­тель перестает работать, а ток, потребляемый им из сети, не превышает тока нормальной работы. После устранения перегрузки работа преобразователя автоматически восстанавливается.

При эксплуатации часто используют целую группу преобразова­телей частоты, питающих отдельные нагрузки. В этом случае за счет асимметричной нагрузки, создаваемой преобразователями (ис­пользуется только один полупериод тока частоты 50 Гц), возможно искажение формы напряжения питающей сети. Кроме того, если преобразователи питаются через общий разделительный трансфор­матор, то возможно увеличение потерь в этом трансформаторе за счет вынужденного намагничивания сердечника. Для предотвраще­ния этих явлений преобразователи разбивают на две группы и включают таким образом, чтобы использовались оба полупериода напряжения сети.

 

Контрольные вопросы

1. Назовите и охарактеризуйте преобразователи параметров электрического тока.

2. Каков принцип действия однотактной схемы инвертора на транзисторе с внешним возбуждением?

3. Каков принцип действия двухтактной схемы инвертора на транзисторах с самовозбуждением?

4.Каков принцип действия двухтактной схемы инвертора на тиристорах?

 

7. СИСТЕМЫ ПИТАНИЯ НОВОГО ПОКОЛЕНИЯ

7.1. Принципы построения источников бесперебойного питания

В соответствии с международным стандартом IEC 60146-4 источники бесперебойного электропитания (ИБП) делятся по схемотехнической реализации и принципу действия на следующие три основные группы [1]:

1) с отключением сети (off-line);

2) линейно-интерактивного типа (line-interactive);

3) с включенной сетью (on-line).

Структурная схема ИБП типа off-line приведена на рис. 7.1. В основном режиме работы, когда первичное переменное напряжение Ес удовлетворяет заданным показателям качества, питание нагрузки UR осуществляется через фильтр. Основной канал передачи энергии в рассматриваемых ИБП здесь и далее показан утолщенными линиями схемы. Контроль качества напряжения UH осуществляется соответствующим контрольным реле, контакт которого S производит переключение нагрузки. В фильтре исполь­зуются элементы, выполняющие также функции ограничителя импульсных помех. Одновременно с этим через выпрямитель заряжаются аккумуляторы. Инвертор, постоянно подключенный к аккумуляторам, предназначен для преобразования постоянного напряжения в переменное — UH. При работе ИБП в основном режиме инвертор может быть отключен от аккумуляторов, а его включение обеспечивается контактом (аналогичным S) контрольного реле, однако при этом должно учитываться время выхода инвертора на номинальный режим установления выходного напряжения, которое обычно бывает значительным.

 

 

Рис. 7.1. Структурная схема ИБП типа off-line

 

Когда контрольное реле выявляет отклонение напряжения Ес, выходящее за допустимые нормы, контакт S переключается, ИБП переходит в автономный режим работы и нагрузка UH обеспечивается электропитанием от инвертора. ИБП имеют время переключения контакта S в пределах t = 4... 15 мс. Такой интервал времени пропадания переменного напряжения UH в подавляющем большинстве случаев не влияет на работоспособность аппаратуры вычислительной техники, так как ее собственные источники электропитания, имея внутренние сглаживающие фильтры, допускают большие значения t. Если инвертор в основном режиме отключен от аккумуляторов, то требуется выполнить пуск инвертора, и тогда типичная длительность времени t составит 10—20 периодов частоты сети и более, что для частоты 50 Гц составляет t > 200 мс.

К недостатку ИБП типа off-line относится его неудовлетворительная работа при низком качестве напряжения Ес, когда имеют место частые переключения контакта S. Это определяет трудность восстановления емкости аккумулятора. Кроме того, так как нагрузка UH подключается непос­редственно к сети Ес, к фильтру предъявляются жесткие требования п«подавлению различного рода импульсных помех.

Таким образом, термин off-line (отключенная сеть) означает, что при появлении недопустимых отклонений первичного напряжения нагрузка UH отключается от сети Ес и переходит на питание от инвертора.

Структурная схема ИБП типа line-interactive приведена на рис. 7.2. Ее от­личие от схемы на рис. 5.1 заключается в применении регулятора, который улучшает качество напряжения на нагрузке при работе в основном режиме.

Регулятор обычно реализуется в виде ступенчатого переключателя напряжения, построенного на основе трансформатора или автотранс­форматора с несколькими обмотками. В некоторых моделях ИБП исполь­зуются более сложные стабилизаторы переменного напряжения.

Рис. 7.2. Структурная схема ИБП типа line-interaktive

Основным преимуществом рассматриваемого ИБП является то, что при изменениях величины напряжения Ес переключение контактом S на работу в автономном режиме происходит гораздо реже. Причем чем больше диапазон допустимых изменений напряжения Е компенсируемых регулятором, тем реже источник будет переходить в автономный режим работы. Снижается также жесткость требований к электрическим ха­рактеристикам фильтра, что уменьшает его стоимость. Это обусловливает повышение надежности работы ИБП и уменьшение энергопотребления от аккумуляторов. Однако здесь имеется такой недостаток, как кратко­временное пропадание напряжения U при переключении контакта S.

Большую надежность и лучшее качество напряжения Un обеспечи­вают ИБП типа on-line (структурная схема на рис. 7.3). В подобных источниках сетевое напряжение Ес через выпрямитель поступает на преобразователь постоянного напряжения ИПН.

Инвертор постоянно подает питание на нагрузку, чем устраняются пере­ходные процессы переключения механических контактов. Параллельное соединение выходов ИПН и аккумуляторов обеспечивает непрерывность работы инвертора при коммутации его входного напряжения, что исключает даже кратковременные перерывы напряжения t/H. Очевидно, что диапазон допустимых изменений входного напряжения Е ИПН может быть значительным и рассчитанным на длительные статические и им­пульсные помехи.

Преимуществом ИБП подобного типа является высокая стабильность напряжения UH в широком диапазоне воздействия дестабилизирующих факторов со стороны источника Е. Практически стабильность напряжения UH известных моделей ИБП подобного типа обеспечивается в пределах ± 1...3 % при изменении напряжения Ес от нуля до 280 В. Наличие им­пульсных преобразователей (ИПН) в основном и резервном каналах

Рис. 7.3. Структурная схема ИБП типа on-line

 

передачи энергии позволяет получить более широкие возможности по реализации функций защиты нагрузки и собственно ИБП от перегрузок. Типовые ИБП обеспечивают работу устройств без переключения на аккумуляторы в диапазоне величин напряжений Ес = 160...280 В.

Недостатком ИБП типа on-line является сравнительно невысокий КПД, что обусловлено двойным силовым преобразованием энергии постоянного напряжения (в преобразователе ИПН и инверторе) по отношению к ранее рассмотренным структурам ИБП. В частности, для источников последних модификаций КПД находится в пределах h = 85—92 %, в то время как для on-line практические значения Л на 7—15% ниже. Кроме того, наличие двух преобразователей электрической энергии увеличивает стоимость ИБП. Несмотря на эти недостатки, ИБП типа on-line нашли большое применение, так как они обеспечивают разумный компромисс между стоимостью, безопасностью и надежностью работы аппаратуры вычис­лительной техники.

Таким образом, термин on-line (включенная сеть) означает, что сеть пер­вичного напряжения ИБП остается подключенной к основному каналу регу­лирования в существенно большем диапазоне изменений напряжения Ес.

Дальнейшее повышение надежности ИБП типа on-line достигается путем введения в него пассивного канала (by-pass) передачи энергии из источника Ес к нагрузке Uw Структурная схема этого ИБП приведена на рис. 7.4. Здесь канал by-pass подключается контактом S при возникновении отказов, например, в инверторе или в ИПН и в аккумуляторе одновременно. Так как подобная ситуация довольно редка, введение в схему контакта S, переключение которого вызовет появление одного кратковременного перерыва напряжения UR, вполне оправданно. Последние модели ИБП обеспечивают переключение его работы в режим by-pass без переходных процессов в питании нагрузки (intelligent by-pass).

 

 

Рис. 7.4. Структурная схема ИБП типа on-line by-pass

 

Существуют различные пути совершенствования структур ИБП. Перспективным направлением является использование модульных принципов наращивания мощности нагрузки. Примером может служить параллельная двухуровневая структурная система включения ИБП (master-slave), функциональная схема которой приведена на рис. 7.5. Здесь ИБП 1 master первого уровня управляет распределением нагрузки между ИБП slave второго уровня. При отказе одного из ИБП увеличивается нагрузка на ИБП master. Это вызывает передачу соответствующих сигналов по информационным каналам связи на функционирующие ИБП slave, что создает соответствующее перераспределение выходной мощности между ними для поддержания неизменности выходного напряжения UH.

Рассмотренная система ИБП обладает по сравнению с предыдущими более высокой надежностью и позволяет при появлении отказов в системах электропитания и электроснабжения, в том числе и железнодорожного транспорта, обеспечить функционирование нагрузки. Кроме того, наличие в ИБП типа master сигнала об отказе того или иного блока позволяет пе­редавать предупредительную информацию для эксплуатационного штата при сохранении работоспособности системы электропитания.

Существуют также различные модификации систем электропитания (рис. 7.5).Наиболее перспективным и общим принципом их построения является использование параллельно включенных ИБП, работающих в режиме «горячего» резервирования. При этом живучесть и надежность функцио­нирования подобных ИБП обеспечивается за счет модульного исполнения и возможности блочного наращивания выходной мощности.

 

Рис. 7.5. Структурная схема системы ИБП типа master-slave

 






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.