Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Формула прямоугольников. Формулы прямоугольников получаются заменой подынтегральной функции постоянным значением




Формулы прямоугольников получаются заменой подынтегральной функции постоянным значением. В качестве такого значения выбирают значение функции в одной из точек отрезка [a, b], или на левом конце отрезка, или на правом конце отрезка, или в середине отрезка (рис.6.1):

(6.7)

(6.8)

(6.9)

Рис.6.1.

Если формулы (6.6) — (6.8) применить к каждой части [xi, xi + 1] отрезка [a, b], то получим общие формулы прямоугольников. Фактически, определенный интеграл приближенно заменяется интегральной суммой:

(6.10)

(6.11)

(6.12)

Геометрически это означает, что площадь криволинейной трапеции приближенно заменяется площадью ступенчатой фигуры. В частности, рис.6.2 иллюстрирует формулу (6.10).

Рис.6.2.

Формулу (6.10) называют формулой левых прямоугольников, а формулу (6.11) — формулой правых прямоугольников, а (6.12), соответственно, формулой средних прямоугольников.

Формулы прямоугольников практически не используются из-за большой погрешности порядка O(h) (у формулы средних более высокий прядок O(h2)), и мы приводим их в учебных целях.


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал