Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Приведение произвольной системы сил к простейшему виду. Условия равновесия произвольной системы силСтр 1 из 85Следующая ⇒
Статика – раздел механики, который изучает равновесие механических систем или тел под действием сил. Величина, являющаяся мерой механического взаимодействия материальных тел называется силой. Основная лемма. Всякая сила, приложенная к абсолютно твёрдому телу, в данной точек А, эквивалентна той же силе, приложенной в точке В, и паре, момент которой, равен моменту силы приложенной в точке А относительно точки В. Пусть есть произвольная система сил действующая на абсолютно твёрдое тело, расположенная как угодно в пространстве. Выберем произвольный центр О и перенесем все силы системы в этот центр. От пересечения каждой силы, мы получим силу и пару, момент которой равен моменту переносимой силы относительно выбранного центра О. Складывая все силы в центре О, получим одну результирующую силу . (1) Складывая моменты вех пар, получим векторный момент результирующей пары: (2) Величина , равная векторной сумме всех cил системы (1) называется главным вектором системы, а величина , равная сумме моментов вех сил системы относительно центра О (2) называется главным моментом относительно центра О. Таким образом, любую пространственную систему сил, приведенную к центру О, заменим на приложенную в этом центре результирующей силой, равной главному вектору системы и результирующей парой, момент которой равен главному моменту системы относительно центра приведения. При изменении центра приведения главный вектор останется без изменений, поэтому он сам представляет собой 1-й инвариант пространственной системы сил по отношению к изменению центра приведения, т.е. . => => => ‑ 2-ым инвариантом системы будет скалярное произведение , т.е проекция вектора момента на направление главного вектора постоянна и не зависит от центра приведения. Векторы и называются элементами приведения системы. 1) Приведем полученную систему к винту. Винт ‑ совокупность силы и пары, вектор момента которой коллинеарен силе (), или же совокупность силы и пары сил, лежащие в ортогональных плоскостях. Разложим исходный вектор момента на две составляющие и . Выберем точку приведения так, чтобы возникающий момент уравновешивал . Т.е мы можем нашу систему привести к винту, зная уравнение винтовой оси. Т. к. , используя , получаем . 2) , в этом случае система сил приводится к одному результирующему вектору, который в таком случае называется равнодействующим . Если , то равно действующая будет проходить через центр О. Эти условия являются необходимыми и достаточными, чтобы система имела равнодействующую. 3) , главный вектор системы не зависит от выбора центра приведения. Система приводится к паре сил с , где О – произвольный центр. 4) ‑ система сил находится в равновесии. Последние условие даёт необходимое и достаточное условие равновесия произвольной системы сил: (3) Если спроектировать (3) на оси коорд-т, то для пространственной сис-мы сил получ 6 – уравнений , , а для плоской ‑ 3 уравнения:
ТЕОРЕМА 3-х моментов. Для равновесия плоской системы сил сумма моментов относительно 3-х точек, не лежащих на одной прямой, равнялась 0. Очевидно, т. к. момент относительно любой точки = 0. ТЕОРЕМА. Для равновесия плоской системы сил сумма моментов относительно 2-х произвольных точек и сумма проекций всех сил на произвольную ось, не перпендикулярно к прямой, соединяющей эти точки = 0. Систему сил, линии действия которых пересекаются в одной точке будем называть сходящейся. ТЕОРЕМА. Если система сил сходящаяся, тогда пространственная система имеет 3 уравнения равновесия, а плоская – 2 уравнения.
|