Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






  • Сервис онлайн-записи на собственном Telegram-боте
    Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое расписание, но и напоминать клиентам о визитах тоже. Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.
    Для новых пользователей первый месяц бесплатно.
    Чат-бот для мастеров и специалистов, который упрощает ведение записей:
    Сам записывает клиентов и напоминает им о визите;
    Персонализирует скидки, чаевые, кэшбэк и предоплаты;
    Увеличивает доходимость и помогает больше зарабатывать;
    Начать пользоваться сервисом
  • Теорема о циркуляции вектора магнитной индукции.






    Так же, как теорема Гаусса в электростатике облегчает вычисление напряженности электростатического поля в некоторых случаях, также теорема о циркуляции [4]вектора магнитной индукции дает возможность легко получить формулы для магнитной индукции в некоторых простейших случаях.

    = (§) Теорема о циркуляции вектора магнитной индукции: «Циркуляция вектора индукции магнитного поля по любому замкнутому контуру L равна алгебраической сумме токов, охватываемых этим контуром, умноженной на mo».
    = (§§)

    Выражение (§) применяется в случаях дискретного распределения проводников с токами, т.е. когда имеются отдельные проводники с токами и требуется найти индукцию В поля вне проводников. Выражение (§§) используется в случаях, когда требуется найти индукцию В магнитного поля внутри проводника с током, т.е. при непрерывном распределении тока по проводнику.

    Рассмотрим некоторые примеры применения теоремы о циркуляции В.






    © 2023 :: MyLektsii.ru :: Мои Лекции
    Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
    Копирование текстов разрешено только с указанием индексируемой ссылки на источник.