Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Усовершенствованный метод Эйлера




Характерной особенностью метода является использование в качестве направления поиска каждой последующей точки численного решения касательной, определяемой в центре отрезка [xk, xk+1]. Как видно на рис.4 для k = 0, последовательно выполняются два шага по методу Эйлера.

Первый из них используется для вычисления тангенса угла наклона касательной в средней точке отрезка [xk, xk+1]

,

,

,

.

После этого делается второй шаг для вычисления x и y новой точки

, .

Если тангенсы углов наклона касательных заменить на правую часть дифференциального уравнения f(x, y), то вышеприведенные фор­мулы для выполнения одного шага по усовершенствованному методу Эйлера сведутся к следующим

, ,

, .

Этот метод является методом второго порядка точности. Он даёт меньшую погрешность численного решения на шаге h, чем метод Эйлера. Его абсолютная погрешность εабс(xk+1, h) на каждом шаге пропорциональна величине h3, а решение совпадает с истинным в случае, когда оно представимо квадратичной функцией y = a1+ a2x + a3x2. Однако это достигается тем, что его трудоёмкость увеличивается примерно в два раза, поскольку для одного шага приходится два раза вычислять значение правой части дифферен­циального уравнения.


mylektsii.ru - Мои Лекции - 2015-2019 год. (0.004 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал