![]() Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Нахождение экстремумов функций
Для нахождения экстремумов функций многих переменных существует две альтернативные возможности. Первая заключается в использовании блока given и функции minerr. Определим функцию двух переменных Зададимся целью найти ее экстремум в области x=[–5, 5] y=[–5, 5]. Оценим по графику положение экстремума. Заносим в матрицу М значения функции в узловых точках
На заданном интервале функция не превосходит 25. Зададим начальные приближения для поиска экстремума
Записываем блок уравнений или неравенств. Число уравнений и неравенств в блоке given – Find должно быть больше и равно числа искомых величин. Если уравнений и неравенств не хватает, то можно просто продублировать одно и то же уравнение или вписать какое–либо тождество, например, 2=2.
Функция Minerr ищет приближенной решение для системы уравнений и неравенств, записанных в блоке. В данном случае мы получили, что системе уравнений наилучшим образом соответствует точка [0, 0]. (Поскольку по умолчанию точность вычислений составляет 0.001, мы округлили результат до 0). Из графика видно, что значение 26 больше самого большого значения функции в окрестностях точки [1, 1], то есть точное решение найти нельзя и функция Minerr подбирает такое значение x, при котором функция ближе всего к значению 26. Вторая возможность – поиск нулей первой производной, то есть стандартный математический подход. Для этого можно использовать блок given – Find. Функция Find ищет точное решение системы уравнений и неравенств, записанных после слова given.
Результаты, полученные различными методами, совпадают, врем счета мало в обоих случаях. В старших версиях Mathcad’а появилась дополнительная возможность поиска экстремумов с помощью функций Minimize и Maximize, которые могут быть использованы как сами по себе, так и совместно с блоком given. Аргументы функций: имя функции, экстремум которой ищется, и список ее аргументов. Забиваем Сайты В ТОП КУВАЛДОЙ - Уникальные возможности от SeoHammer
Каждая ссылка анализируется по трем пакетам оценки: SEO, Трафик и SMM.
SeoHammer делает продвижение сайта прозрачным и простым занятием.
Ссылки, вечные ссылки, статьи, упоминания, пресс-релизы - используйте по максимуму потенциал SeoHammer для продвижения вашего сайта.
Что умеет делать SeoHammer
— Продвижение в один клик, интеллектуальный подбор запросов, покупка самых лучших ссылок с высокой степенью качества у лучших бирж ссылок. — Регулярная проверка качества ссылок по более чем 100 показателям и ежедневный пересчет показателей качества проекта. — Все известные форматы ссылок: арендные ссылки, вечные ссылки, публикации (упоминания, мнения, отзывы, статьи, пресс-релизы). — SeoHammer покажет, где рост или падение, а также запросы, на которые нужно обратить внимание. SeoHammer еще предоставляет технологию Буст, она ускоряет продвижение в десятки раз, а первые результаты появляются уже в течение первых 7 дней. Зарегистрироваться и Начать продвижение Определяем функцию двух переменных Задаем область поиска максимума внутри блока given Находим максимум функции в заданной области В случае функции одной переменной задаем функцию Находим максимум Если мы хотим найти максимальное или минимальное значение функции на некотором интервале, то необходимо определить этот интервал в блоке given На приведенном ниже графике видно, что первый из найденных максимумов соответствовал случаю, когда производная обращается в ноль; второй максимум лежит на границе интервала.
|