Студопедия

Главная страница Случайная страница

Разделы сайта

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Принцип работы системы GPS






В основе работы системы GPS лежит:

· спутниковая трилатерация (на ней базируется работа системы);

· спутниковая дальнометрия (измерение расстояний до спутников);

· точная временная привязка (высокоточная синхронизация отсчета времени в системе спутники-приемники);

· точное положение спутников в космосе;

· коррекция ошибок, вносимых задержкой радиосигнала спутника в ионосфере и тропосфере.

Спутниковая трилатерация предполагает, что точные координаты любой точки на поверхности Земли могут быть вычислены путем измерений расстояний от группы спутников, если их положение в космосе известно.

В этом случае спутники являются пунктами с известными координатами. Предположим, что расстояние от одного спутника известно, и вокруг него можно описать сферу заданного радиуса. Если известно также расстояние до второго спутника, то определяемое местоположение будет расположено где-то в круге, задаваемом пересечением двух сфер. Третий спутник определяет две точки на окружности. Четвертый спутник позволяет окончательно точно определить местоположение точки. Таким образом, зная расстояние до четырех спутников, можно вычислить координаты определяемой точки (рис. 1).

Расстояние до спутников определяется по измерениям времени прохождения радиосигнала от космического аппарата до приемника, умноженным на скорость света. Для того чтобы определить время распространения сигнала, нам необходимо знать, когда он был передан со спутника. Для этого на спутнике и в приемнике одновременно генерируется одинаковый псевдослучайный код. Каждый спутник системы GPS передает два радиосигнала: на частоте L1=1575, 42 МГц и L2=1227, 60 МГц. Сигнал L1 имеет два дальномерных кода с псевдослучайным шумом (PRN), P-код и C/A-код. «Точный», или P-код, может быть зашифрован для военных целей. «Грубый», или C/A-код, не зашифрован. Сигнал частоты L2 модулируется только с P-кодом.[3]

Большинство гражданских пользователей при работе с GPS-системами используют C/A-код. Некоторые приемники Trimble, применяемые в геодезии, работают с P-кодом. Приемник проверяет входящий сигнал со спутника и определяет, когда он сам генерировал такой же код. Полученная разница, умноженная на скорость света, и дает искомое расстояние. Использование кода позволяет приемнику определить временную задержку в любое время. Кроме того, спутники могут излучать сигнал на одной и той же частоте, так как каждый спутник идентифицируется по своему PRN.

Как видно из вышесказанного, вычисления напрямую зависят от точности хода часов на спутниках и в приемниках. Код должен генерироваться на спутнике и в приемнике строго в одно и то же время. На спутниках установлены атомные часы, имеющие точность около одной наносекунды. Однако это решение является слишком дорогим, чтобы использовать его в приемниках GPS. Поэтому для устранения ошибок хода часов приемника используются результаты измерения сигналов от четвертого спутника. Их можно использовать для устранения ошибок, которые возникают, если часы на спутнике и в приемнике не синхронизированы (рис 2).

24 рабочих спутника системы Navstar расположены на высоте примерно 20 200 км от поверхности Земли с орбитальным периодом в 12 часов. В шести различных плоскостях, имеющих наклон к экватору в 55°, расположено по 4 спутника. Указанная высота необходима для обеспечения стабильности орбитального движения спутников и уменьшения фактора влияния атмосферы.

Некоторые источники ошибок, возникающих при работе GPS, являются трудноустранимыми. Вычисления предполагают, что сигнал распространяется с непрерывной скоростью, которая равна скорости света. Однако на практике все обстоит гораздо сложнее. Скорость света является константой только в вакууме. Когда сигнал проходит через ионосферу и тропосферу, скорость его распространения уменьшается, что приводит к ошибкам в измерении дальности. В современных GPS-приемниках используют всевозможные алгоритмы устранения этих задержек. Иногда возникают ошибки хода атомных часов и отклонения орбит спутников, но они обычно незначительны и тщательно отслеживаются станциями слежения. Многолучевая интерференция также вносит ошибки в определение местоположения с помощью GPS приемника. Это происходит, когда сигнал отражается от объектов, расположенных на земной поверхности, что создает заметную интерференцию с сигналами, приходящими непосредственно со спутников. Специальная техника обработки сигнала и продуманная конструкция антенн позволяет свести к минимуму этот источник ошибок.






© 2023 :: MyLektsii.ru :: Мои Лекции
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.
Копирование текстов разрешено только с указанием индексируемой ссылки на источник.