Главная страница Случайная страница Разделы сайта АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
💸 Как сделать бизнес проще, а карман толще?
Тот, кто работает в сфере услуг, знает — без ведения записи клиентов никуда. Мало того, что нужно видеть свое раписание, но и напоминать клиентам о визитах тоже.
Проблема в том, что средняя цена по рынку за такой сервис — 800 руб/мес или почти 15 000 руб за год. И это минимальный функционал.
Нашли самый бюджетный и оптимальный вариант: сервис VisitTime.⚡️ Для новых пользователей первый месяц бесплатно. А далее 290 руб/мес, это в 3 раза дешевле аналогов. За эту цену доступен весь функционал: напоминание о визитах, чаевые, предоплаты, общение с клиентами, переносы записей и так далее. ✅ Уйма гибких настроек, которые помогут вам зарабатывать больше и забыть про чувство «что-то мне нужно было сделать». Сомневаетесь? нажмите на текст, запустите чат-бота и убедитесь во всем сами! Глава 9. Антисмысловые РНК, рибозимы и дезоксирибозимы
Антисмысловые РНК как ключевые компоненты одной из систем негативной регуляции экспрессии генов были впервые описаны у бактерий. Вскоре тот же тип регуляции был обнаружен и у эукариот. Уже в первых опытах было установлено, что короткие РНК, комплементарные мРНК, образуют с ними гибриды и блокируют трансляцию. Поскольку действие таких РНК направлено против функционирования кодирующих (осмысленных) РНК, они получили название антисмысловых (antisense RNA), или micРНК (mRNA interfering complementary RNA). Это открытие вскоре легло в основу целого направления исследований искусственной регуляции экспрессии генов, неразрывно связанного с методами генной инженерии. Антисмысловые РНК и олигонуклеотиды Главный механизм, лежащий в основе функционирования системы антисмысловых РНК, прост и опирается на известный феномен взаимодействия двух комплементарных друг другу молекул нуклеиновых кислот с образованием двухцепочечных РНК–РНК- или ДНК–РНК-гибридов. Оказалось, что взаимодействие с мРНК комплементарного ей полинуклеотида или олигонуклеотида (которые могут быть транскриптами незначащей цепи ДНК, т.е. противоположной той, с которой произошла транскрипция этой мРНК) может блокировать ее трансляцию рибосомами и нарушать экспрессию всего гена на уровне трансляции. В середине 1970-х годов синтетические олигонуклеотиды, комплементарные мРНК, были впервые использованы в бесклеточных системах биосинтеза белка для подавления трансляции этих мРНК. С разработкой современных методов генной инженерии получение антисмысловых РНК упростилось, так как достаточно в экспрессирующем векторе поместить кодирующую последовательность гена в обратной ориентации по отношению к промотору, чтобы начала транскрибироваться незначащая цепь ДНК с образованием антисмысловой РНК. В такой системе с использованием современных векторов, в которых клонируемая последовательность фланкирована промоторами T3-, T7- или SP6-РНК-полимераз (например вектор Bluescript, см. рис. II.5), можно синтезировать большое количество антисмысловых РНК и использовать их в высокоочищенном состоянии в опытах in vitro. Однако современные генно-инженерные конструкции позволяют вводить векторные молекулы, экспрессирующие антисмысловые РНК, непосредственно в клетки живых организмов и наблюдать биологические эффекты антисмысловых РНК в результате их эндогенной экспрессии.
|